RTOS, Spring 2015 — Lab #4: Process synchronization

Paolo Torroni, paolo.torroni@unibo.it
Davide Chiaravalli, davide.chiaravalli@studio.unibo.it

Objective: to learn the basics of programming concurrent threads

1. Background
Make sure you have read and understood Chapter 6 from the OS textbook
(“Synchronization”).

Pthreads provides various tools for synchronizing processes. These include
* Mutex locks
* Condition variables
* Semaphores (via the sem. h library)

The steps for using a mutex lock are:
1. Definition of lock (pthread mutex t lock;)
2. Initialization of lock (pthread mutex init (&lock,NULL) ;)
3. Use of lock to synchronize thread execution
(pthread mutex lock(&lock);
pthread mutex unlock(&lock) ;)
4. Dismissal of lock (pthread mutex destroy(&lock) ;)

The definition of a variable (say, 1ock) of type pthread mutex t createsa
mutex lock, but before 1ock can be used, it must be initialized using function
pthread mutex init (&lock, attr).This function initialises lock with
attributes specified by attr. If attr is NULL, default attributes are used (it's OK
to leave it NULL if you don’t have to deal with priority inversion).

Notice that 1ock is initially unlocked.

Remember to always pass the mutex to the above functions by address (use
&lock, not simply 1ock).

As soon as you don’t need the mutex any longer, you should destroy it to free the
resources it uses. Be sure to destroy it when it is unlocked.

2. Synchronization using mutex locks
A) Consider the sample thread program below, where a parent thread creates
two children threads, and each thread prints out a “Hello World” message. Build.
Execute repeatedly. Consider the output: is it always in the same order?
B) Use mutex locks to ensure that the always shows in the order:

First Hello World

Second Hello World

Third Hello World

Last Hello World




A
* Sample thread program

*/

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *f a(void*arg) {
puts("!!!'First Hello World!!!");
return NULL;

}

void *f b(void*arg) {
puts ("!!!Second Hello World!!!");
return NULL;

}

int main(void) {
pthread t thread a, thread b;
pthread create(&thread a, NULL, f a, NULL);
pthread create(&thread b, NULL, £ b, NULL);

puts("!!!'Third Hello World!!!");

pthread join(thread a,NULL);
pthread join(thread b,NULL);

puts("!!!Last Hello World!!'!!");
return EXIT SUCCESS;
}

Note: you can download the file lab4-mutex-hw.c from
http://lia.deis.unibo.it/Courses/RTOS/

3. Rendez-vous
A) Consider the program below. Use mutex locks to ensure that

Third Hello World
and

Fourth Hello World
always come after both

First Hello World
and

Second Hello World

have been printed out (the relative order between Third and Fourth and
between First and Second is irrelevant).

A
* Sample thread program

*/

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *f a(void*arg) {
puts("!!!'First Hello World!!!");
puts("!!!'Third Hello World!!!");
return NULL;



void *f b(void*arg) {
puts ("!!!Second Hello World!!!");
puts ("!!!Fourth Hello World!!!");
return NULL;

t

int main(void) {
pthread t thread a, thread b;
pthread create(&thread a, NULL, f a, NULL);
pthread create(&thread b, NULL, £ b, NULL);

pthread join(thread a,NULL);
pthread join(thread b,NULL);

return EXIT SUCCESS;
t

Note: you can download the file lab4-mutex-rendezvous.c from
http://lia.deis.unibo.it/Courses/RTOS/

4. Readers-Writers

A) Implement a program with 4 threads (2 readers and 2 writers). You can start
from the sample code in lab4-readers-writers.c from the lab page
http://lia.deis.unibo.it/Courses/RTOS/ but then you must fix it, to make sure
that synchronization is correct.

B) Execute the program. Observe if there is risk of starvation.

6. Self assessment

How can I secure exclusive access to a critical section?

As soon as a mutex lock is initialized, is it open or closed?

How can I implement a rendez-vous?

How does a rendez-vous differ from a “before” type synchronization?

[s there a possible situation of starvation in the solution we have seen of
the Readers-Writers problem?

OO0O00onO

Notice that, to correctly use Pthreads (with Eclipse), you should:
1) #include <pthread.h>
2) add the -pthread option both in the GCC C Compiler and in the GCC C Linker:
->Project->Properties->C/C++ Build->Settings->Tool Settings
->GCC C Compiler->Miscellaneous-> Other flags: add -pthread
->Project->Properties->C/C++ Build->Settings->Tool Settings
->GCC C Linker->Miscellaneous-> Linker flags: add -pthread




