RTOS, Spring 2015 — Lab #2: RTAI and Linux kernel modules

Paolo Torroni, paolo.torroni@unibo.it

Davide Chiaravalli, davide.chiaravalli@studio.unibo.it

[partially adapted from text by Paolo Mantegazza, www.rtai.org, Harco Kuppens,
www.cs.ru.nl/lab/rtai, and other sources]

Objective: to understand kernel modules in Linux (RTAI) and learn how to list,
load, and remove them

1. Background
Make sure you have read and understood the introduction to RTAI in Appendix.

2. Start up RTAI

A) Power up your station.

B) From “Select the operating system to boot” menu, select “Rtai.”

C) Username/password: rtai

Notice: RTAl is not always available in the boot meu in Lab2.

Notice: after log off, data erased (no permanent private folders). It is advised that
you bring your owhere you can permanently save files.

med)a

3. Learn some more useful shell commands
A) uname -r

B) wget http://lia.deis.unibo.it/Courses/RTOS/input/naming
C) less naming | grep cat grep cal < namin

D) dmesg l less J

lmore

F)lsmod hda loostsirap.oa C'{' /\IN/JDQ /KQ@

Notice: remember that to quit an application you may often use q or CTRL+c

4. Compile and run a kernel module
A) Obtain hello.c and Kbuild from lia.deis.unibo.it/Courses/RTOS/src/2015-2/
B) Open hello.c and analyze code. Notice printk() instead of printf(). Why?

C) Open Kbuild and analyze code. cat Kby
nono hello.c

What is Kbuild? In the newer linux versions, kernel modules are built using the
kernel build system 'kbuild’, which uses a so-called 'Kbuild' makefile to make a
module. The Kbuild file contains instructions about how to compile:

- where are Linux kernel source tree [/lib/modules/...]

- what target [modules:]

- what object files are needed [.c -> .0]

- which compiler to use [$(MAKE)]

Kbuild has a typical format:

Kbuild file
KDIR ?= /lib/modules/ uname -r /build
modules:

make -C $(KDIR) M='pwd modules
obj-m := hello.o

o U('CQ;-[-\ [ﬂ KLUI lc{

lﬁe“o c :;:\l‘?r e,“o l&o ;msmody

Notice: after "modules:" there is new 11 /gnd tl#e next line must start with a TAB.

D] make -f Kbuild) sther wore

E) sudo insmod hello.ko _kllq C kerne))

F) Ismod — —
G) sudgrmmod hello = & l’ I

H) tail(-f//var/log/kern.log 4

5. Load RTAI kernel modules and run latency testsuite
A) sudﬁ insmod Pusr/realtime/modules/rtai_hal.ko
B) sudo insmod /usr/realtime/modules/rtai_sched.ko
C) Ismod | grep rtai ls Jusr freattime modules
D) cd /usr/realtime/testsuite
cd kern/latency
sudo ./run

6. Self assessment

What information is displayed in each of three columns by Ismod?
What shell command can be used to download a file from the Internet?
How are kernel modules compiled?

How are kernel object files used?

Does loading a kernel module require special privileges?

Where can I see the output produced by kernel modules?

Does Linux schedule RT tasks?

Does RTAI schedule user-space tasks?

Can a RT task interact with a Linux task running in user-space?
What happens when we load/remove the following module?

OO0O0O00OO0O00Oo0oa0d

/*
* hello.c
*/

#include <linux/kernel.h>
#include <linux/module.h>

int init function(void);
void exit function(void);

module init(init function);
module exit (exit function);

int init function (void)

{
printk ("Hello World!\n");
return 0;

}

void exit function(void)

{
printk ("Goodbye World!\n");
return;

}

[0 What does the folder /usr/realtime/modules contain?

Appendix. About RTAI
RTAI is not a Real-Time Operating System. It is a module in dormant state ready
to overtake Linux. RTAI adds RT features to Linux. To this end, RTAI's RT
scheduler replaces the original Linux scheduler, and:

* intercepts the timer interrupt and external device interrupts,

* runs any real-time code associated with these, and

* runs any normal Linux processes in the time left over.

Essentially, for RTAI, Linux is a background task.

An interrupt dispatcher traps the peripherals interrupts and if necessary re-
routes them to Linux.

LXRT e 3
Task Task Task % g
A A A Y 20
___________________ RT
FIFO
Linux Kernel RT RT n
Scheduler / Services w o
() Task Task =3
\ \ s
wawm
Linux RT Kernel X
Drivers (Scheduler / Services)
A RT Drivers
Interrupts
Hardware

Installing RTAI requires patching the Linux kernel (patches are available for
certain versions of the Linux kernel, see rtai.org).

RTAI Linux tasks are "kernel modules," meaning they run as part of the
privileged Linux kernel, similar to device drivers. Key RTAI modules are:
* rtai_sched (real time scheduler module)
e rtai_fifos: IPC
* rtai_shm: allows sharing memory among different real time tasks and
Linux processes
* rtai_lxrt: implements services to make available any of the RTAI
schedulers functions to Linux processes

- see them in /usr/realtime/modules

Kernel modules, like device drivers, execute in a primitive environment, without
direct access to many user-level Linux facilities like terminal or file I /0.

WARNING: Errors may crash the system (running in privileged mode)

Kernel modules are dynamically loaded using the insmod (insert module) shell
command, and unloaded (stopped), using rmmod (remove module). These
commands are only available to the root user (administrator)

- use "sudo" to run a program with root privileges (e.g., sudo insmod ...)

C programs are normally compiled into full executable programs, but kernel
modules are compiled into object code. Compiling a kernel module does not
produce a full-blown executable file, but a loadable .ko’ (kernel object) file.

In C, a program's "entry point" where execution begins is a function called
'main()". For a kernel module, this entry point is declared inside module_init(), or
else is called 'init_module()' by default. 'insmod' looks for module_init or

init_ module when loading the code.

A module's "exit point" is a function declared inside module_exit(),
(‘cleanup_module()' is default). This will be invoked when 'rmmod' removes the
kernel module.

