
Evolutionary Computation
An overview

Andrea Roli

DEIS-Cesena
Alma Mater Studiorum Università di Bologna

Cesena (Italia)

andrea.roli@unibo.it

Inspiring principle

Evolutionary Computation is inspired by natural selection

Natural selection

“The process by which traits become more or less common in a
population due to consistent effects upon the survival or repro-
duction of their bearers. It is a key mechanism of evolution.”
(From Wikipedia, visited on December 2010)

Key concepts

The fittest individuals have a high chance of having a
numerous offspring.

The children are similar, but not equal, to the parents.

The traits characterizing the fittest individuals spread
across the population, generation by generation.

EC techniques are not meant to simulate the biological
evolutionary processes, but rather aimed at exploiting these key
concepts for problem solving.

Evolutionary Computation

Evolutionary Computation encompasses:

Genetic Algorithms

Genetic Programming

Evolution Strategies

. . .

Main applications

System design

Neural network training

Signal processing

Optimization (discrete and continuous)

Time series analysis and forecasting

Artificial Life

Games

Genetic Algorithms

The Metaphor

BIOLOGICAL EVOLUTION ARTIFICIAL SYSTEMS
Individual ↔ A possible solution
Fitness ↔ Quality

Environment ↔ Problem

The Evolutionary Cycle

POPULATION

PARENTS
SELECTION

RECOMBINATION

MUTATION

OFFSPRING
REPLACEMENT

Main genetic operators

Recombination: combines the genetic material of the parents.

Mutation: introduce variability in the genotypes.

Selection: acts in the choice of parents whose genetic material
is then reproduced with variations.

Replacement/insertion: defines the new population from the
new and the old one.

EC algorithms define a basic computational procedure which
uses the genetic operators.

The definition of the genetic operators specifies the actual
algorithm and depends upon the problem at hand.

Genetic Algorithms

Developed by John Holland (early ’70) with the aim of:

Understand adaptive processes of natural systems

Design robust (software) artificial systems

Directly derived from the natural metaphor

Very simple model

‘Programming oriented’

A bit of terminology

A population is the set of individuals (solutions)

Individuals are also called genotypes

Chromosomes are made of units called genes

The domain of values of a gene is composed of alleles
(e.g., binary variable↔ gene with two alleles)

Simple Genetic Algorithm

Solutions are coded as bit strings

0 0 0 1 01 1 1 1 1

CHROMOSOME

GENE

Integer

Plan

Real

Rules

.....

GENOTYPE PHENOTYPE

Encoding examples

Optimization of a function of integer variable x ∈ [0, 100].
Possible encodings:

binary coding→ string of 7 bit;

4 bits per digit→ string of 12 bit.

Optimization of a function of real variable y ∈ [0, 1[. Possible
encoding:

binary coding→ string

SGA genetic operators (1)

Recombination or Crossover: cross-combination of two
chromosomes (loosely resembling biological crossover)

1 1 0 01 0 0 0 1 0 1 1 0 01 0

0 1 1 1

0 1 1 1

0 0 1 00 0 0 11 10 0 0 11 1

SGA genetic operators (2)

Mutation: each gene has probability pM of being modified
(’flipped’)

0 0 0 1 01 1 0 1 1

0 0 0 1 01 1 1 1 1

SGA genetic operators (3)

→ Proportional selection: the probability for an individual to
be chosen is proportional to its fitness.

Usually represented as a roulette wheel.

50%
10%

10%

25%

5%

I1 50
I2 25
I3 10
I4 10
I5 5

Genetic operators (4)

Generational replacement: The new generation replaces
entirely the old one.

Advantage: very simple, computationally not expensive,
easier theoretical analysis.

Disadvantage: it might be that good solutions are not
maintained in the new population.

SGA: High-level algorithm

Initialize Population
Evaluate Population
while Termination conditions not met do

while New population not completed do
Select two parents for mating
Apply crossover
Apply mutation to each new individual

end while
Population← New population
Evaluate Population

end while

Termination conditions

Execution time limit reached.

Satisfactory solution(s) have been obtained.

Stagnation (limit case: the population converged to the
same individual)

Why does it work?

Intuition:

Crossover combines good parts from good solutions (but it
might achieve the opposite effect).

Mutation introduces diversity.

Selection drives the population toward high fitness.

Fitness Landscape

Representation of the space of all possible genotypes, along
with their fitness.

Fitness Landscape

The metaphor of landscape should be taken cum grano salis.

One operator, one landscape.

In some cases fitness landscapes are dynamic.

Landscape ‘intuition’ might be misleading, because it might
implicitly suggest a metric in the search space that actually
does not exsist.

SGA: pros and cons

Pros:

Extremely simple.

General purpose.

Tractable theoretical models.

Cons:

Coding is crucial.

Too simple genetic operators.

A general GA

Solution coding (e.g., bit strings, programs, arrays of real
variables, etc.)

Define a way for evaluating solutions (e.g., objective
function value, result of a program, behavior of a system,
etc.)

Define genetic operators. Mutation is always necessary,
while crossover can be omitted.

Mutation

Learning applied to modify the chromosome

In optimization, hill-climbing or more complex local search
algorithms can be applied

Examples of crossover

Recombination:

Multi-point crossover (recombination of more than 2
“pieces” of chromosomes)

Multi-parent crossover (the genetic material of a new
individual is taken from more than 2 parents)

Uniform crossover (children created by randomly shuffling
the parent variables at each site)

Multi-point crossover

111

1 0 0 0 1 0

0 1 1 1

0 0 1 01 0 0 0 0 11 1

0 0 01 1

1 1 0 01 0

Multi-parent crossover

1 1 0 0

0 1 1 0

0 0 1 0

0 1 1 1

1

00 1

1 1

0 1

0 0 0

1

0 0

1 0

1 0 1 01 0

1 1 0

0 1 1

0 1 1

1 1 01 0

11

1 1 0 1 1 0

Toward less simple GA

Selection:

Different probability distribution (e.g., probability
distribution based on the ranking of individuals)

Tournament Selection (iteratively pick two or more
individuals and put in the mating pool the fittest)

Ex: real valued variables

- Solution: x ∈ [a, b], a, b ∈ R

- Mutation: random perturbation x → x ± δ, accepted if
x ± δ ∈ [a, b]

- Crossover: linear combination z = λ1x + λ2y , with λ1, λ2

such that a ≤ z ≤ b.

Example: permutations

- Solution: x = (x1, x2, . . . , xn) is a permutation of
(1, 2, . . . , n).

- Mutation: random exchange of two elements in the n-ple.

- Crossover: like 2-point crossover, but avoiding value
repetition.

Eight Queens

Place 8 queens on a 8× 8 chessboard in such a way that the
queens cannot attack each other.

Eight Queens

Genotype: a permutation of the numbers 1 through 8

7 13 2 4 6 5 8

Eight Queens

Mutation: swap two numbers

21 11 3 5 4 8 7 2 3 5 8 74 1

Eight Queens

Crossover: combine two parents

7

1

8 7

5

6

8 7 6 5 4 3 2

3 5 2 6 41

8 7 6 2 4 1 3

3 5 4 2 81

Eight Queens

Fitness: penalty of a queen is the number of queens it can
check.

The fitness of the configuration is the sum of the single
penalties.

Genetic Programming

Can be seen as a ‘variant’ of GA: individuals are
programs.

Used to build programs that solve the problem at hand (⇒
specialized programs).

Extended to automatic design in general (e.g., controllers
and electronic circuits).

Fitness is given by evaluating the performance of the
program (based upon some defined criterion).

Genetic Programming

In most of the cases, individuals are represented as trees,
which encode programs.

>

1

+

2 IF

3 4

T 6

Operators

Mutation: Random selection of a subtree which is substituted
by a well formed random generated subtree.

>

1

+

2 IF

3 4

6T

>

6*

1

+

2 IF

3 4

2Y

Operators

Crossover: Swap two randomly picked subtrees.

4

+

4

+

5

5>

+

2 IF

3 4

T 6

>

IF

3 4

T 6

IF

<

1

+

2

2

IF

<

1

2

The realm of GP

Black art problems.
E.g.,automated synthesis of analog electrical circuits,
controllers, antennas, and other areas of design.

Programming the unprogrammable, involving the automatic
creation of computer programs for unconventional computing
devices.
E.g.,cellular automata, parallel systems, multi-agent systems,
etc.

Coevolution

Species evolve in the same environment

→ dynamic environment

Two kinds:

Competitive

Cooperative

Competitive Coevolution

⊲ Species evolve trying to face each other

E.g., prey/predator, herbivore/plants.

Applications: ALU design for Cray computer, (pseudo-)random
number generator.

Cooperative Coevolution

⊲ Species evolve complementary capabilities to survive in their
environment

E.g., host/parasite.

Applications: ‘niche’ genetic algorithms for multi-criteria
optimization.

Examples

The Prisoner’s Dilemma

Axelrod and The Prisoner’s Dilemma

Game strategies evolved through genetic algorithms.

Dynamic environment (a player plays against other
different players).

Best strategy evolved by GA is the best human strategy.

Analysis of the arising of cooperation.

The Prisoner’s Dilemma

The two players in the game can choose between two
moves, either cooperate or defect .

Each player gains when both cooperate, but if only one of
them cooperates, the other one, who defects, will gain
more.

If both defect, both lose (or gain very little) but not as much
as the ”cheated” cooperator whose cooperation is not
returned.

The payoff matrix

Cooperate Defect
Cooperate R,R S,T

Defect T,S P,P

T: Temptation to defect

R: Reward for mutual cooperation

P: Punishment for mutual defection

S: Sucker’s payoff

HP: T > R > P > S ; 2 R > T + S

Problem encoding

Suppose that the memory of each player is one previous move.
E.g., player A cooperated and player B defected becomes: CD.

The strategy is defined with a move for each possible past
move. E.g.:

If CC then C
If CD then D
If DC then C
If DD then D

→ the string is CDCD

Tit for tat strategy (winner).

Evolutionary robotics

Robots are controlled by means of neural networks.

The neural network is designed by means of an EC
technique.

The fitness is computed by simulating the robot.

The best resulting robot’c controller is tested in a real
setting.

Evolutionary robotics

(taken from D. Floreano and L. Keller, Evolution of Adaptive
Behaviour in Robots by Means of Darwinian Selection, PLOS Biology,

Jan. 2010, Vol. 8, Issue 1)

NASA antenna design

Space Technology 5 Project.

Antennas are defined through a LOGO-like programming
language.

Antenna construction programs are evolved by means of
an EC technique.

EC and Artificial Life

Tierra

Artificial evolution of computer programs (T. Ray, early
’90s)

Environment: virtual computer

Individuals: self-replicating assembler programs

Resources: CPU time and memory

Tierra

Results of evolution: several kinds of nontrivial behaviors and
dynamics

parasites

immunity to parasites

circumvention of immunity to parasites

social individuals

. . . and others

Suggested references

M.Mitchell. Genetic Algorithms. MIT Press, 1999.

D.E.Golberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, 1989.

R. Poli, W.B. Langdon, N.F. McPhee, J. Koza. A Field
Guide to Genetic Programming,
http://www.gp-field-guide.org.uk/ (free download –Creative
Commons).

S. Nolfi and D. Floreano, Evolutionary robotics. The MIT
Press, 2000.

