
Stefano Bragaglia

AN INTRODUCTION

TO ONTOLOGY DEVELOPMENT

A (REALLY) BRIEF HISTORY

OF THE SEMANTIC WEB

“The World-Wide Web (W3) was developed to be a pool of human knowledge,
which would allow collaborators in remote sites to share their ideas and all aspects
of a common project.”

Sir Timothy Berners-Lee

� Christmas 1990: with the implementation of the HyperText Transfer Protocol,
the HyperText Markup Language, the CERN httpd (an HTTP server) and
WorldWideWeb (a web editor/browser) the first web page is transmitted.

� September 1994: Berners-Lee founds the World-Wide Web Consortium to
create standards and recommendations to improve quality of the Web.

� Early 2002: new ideas for sharing contents arises, the new paradigm aims to
democratize the Web by means of social networks (Web 2.0)

� Mid 2006: Berners-Lee introduces the Semantic Web to turn the Web from
machine-representable to machine-understandable, thus allowing automatic
reasoning

2

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

A WINNING EXAMPLE OF

SEMANTIC WEB APPLICATION

SIRI
a free personal
assistant for iPhone

� Awarded during
this year’s SXSW
Festival as “Most
Innovative Web
Technology”

� Integrates a
growing number of
third-party web
services

� Understands user’s
needs,
automatically
discovers solutions
and provides
answers

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

3

A FEW CONSIDERATIONS

ON THE SEMANTIC WEB

� Automatic reasoning will be possible if the data on Internet will
be enriched with semantic annotations

Who should do it? How difficult is it?

� Software that (ascertainably) draws conclusions from semantic
annotations is also required (work in progress)

Is it feasible? Will it push Web annotation?

� The first partial results were collected only now, after years of
large investments

Is the Semantic Web really needed?

� Thus automatic reasoning has been postponed in favor of data
interoperability (Data Web vs. Semantic Web), but…

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

4

THE SEMANTIC WEB CAKE

Architecture:

The Semantic
Web is complex
and several
layers are
required, each
addressing
specific issues

5

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

THE SEMANTIC WEB CAKE

Requirements:

URI: a mechanism to
refer things (similar to
URL)

UNICODE: a universal
character set to grant
communication

XML: elemental
syntax and content
structure for
documents
(semantics delegated
to higher levels)

6

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

THE SEMANTIC WEB CAKE

Data
Interchange:

Resource Description
Framework:

� Based on XML

� (Almost) as
expressive as E-R
Diagrams or Class
Diagrams

� Describes the domain
by triples : < subject,
predicate, object > or
< resource, attribute,
value >

� Defines “roles” like:
subject, predicate,
object, type, value,
ecc.

7

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

THE SEMANTIC WEB CAKE

Querying:

SPARQL Protocol and

RDF Query Language:

� Inherits from both
Prolog and SQL

� Interacts with RDF
triples

8

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

THE SEMANTIC WEB CAKE

Knowledge

Representation:

RDF Schema:

� Extends RDF with
subClassOf,
Datatype, etc.

� Good for
taxonomies

OWL:

� Extends RDFS with
disjointWith,
equivalentProperty,
InverseOf, ecc.

� Good for ontologies

9

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

THE SEMANTIC WEB CAKE

Rules

Representation:

Semantic Web rule

language:

� Applies rules to data:
a hasParent b /\

b hasBrother c

=> a hasUncle c

Rule Interchange

Format:

� Allows portability of
rules between
languages

NB: Currently

undergoing a

standardization

process

10

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

THE SEMANTIC WEB CAKE

Reasoning:

Unifying logic: a
mediator layer
between data
querying, knowledge
and rule
representation

Proof: exploits the
underlying unified
logic to draw new
conclusions from
available data

NB: Currently

undergoing active

research

11

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

THE SEMANTIC WEB CAKE

Trust:

Cryptography:

founded on
underlying platform,
ensures that data are
kept confidential

Certification: founded
on underlying
platform, ensures that
data come from an
entrusted source

NB: Currently

undergoing active

research

12

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

THE SEMANTIC WEB CAKE

Presentation:

User interface:

provides an
environment to
present application to
final users

NB: Currently

undergoing active

research

13

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

EXPRESSIVENESS

OF SEMANTIC MODELS

The languages seen so far can
be arranged by increasing
expressiveness.

Consider the complexity of
what you aim to model when
choosing one:

� Taxonomy: a set of terms
hierarchically organized
Ex.: IEEE Computer Society
Keywords

� Thesaurus: a set of terms
with linguistic relations
among them
Ex.: Princeton University’s
WordNET

� Conceptual Model: a set
of organized concepts and
specific relations among
them describing a specific
domain

� Logic Theory: basically a
conceptual model
supported by inference
mechanisms

Ex: PizzaOntology, FOAF,
etc. just to name a few

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

14

ONTOLOGIES

AND THE SEMANTIC WEB

� Ontology: a formal, explicit description of a domain of
interest (by means of concepts and relations among
them)

Ontology + Instances = Knowledge Base

� Several proposal within the Semantic Web Initiative:

� RDF Schema: RDF extensions with proper terms for
ontological concepts; good for taxonomies

� …

15

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

ONTOLOGIES

AND THE SEMANTIC WEB

� Several proposal within the Semantic Web Initiative:

� OWL 1.1 (Ontology Web Language): RDFS extension with three
variants of increasing expressiveness:

� OWL-Lite: limited support for certain features (ex.: cardinality), good
for thesauri or hierarchies; intended to be easily computable, tools
development is difficult as per other dialects

� OWL-DL: maximum expressiveness possible, computationally
complete, decidable and availability of practical reasoning algorithms;
named after Description Logic that studies the logics of its formal
foundation

� OWL-Full: minimal compatibility with RDF-S, has different semantics
(classes as both collections of individuals and individuals), complete
reasoning support is unlikely

� OWL 2: introduces “profiles” such as OWL 2-EL (fragment with
polynomial time reasoning complexity), OWL 2-QL (simplifies support
to queries) and OWL 2-RL (OWL subset meant to handle rules)

16

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

OWL
AND DESCRIPTION LOGICS

� Description Logics, as First Order Logic, is a family of logics

� Each fragment of logics depends on which operators are
supported

� The more supported operators, the higher the complexity

� OWL-DL supports the following operators:

17

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

OWL ONTOLOGIES

Terminology:

Instance: a specific
object of the domain
(same as DL’s
individual)

� An instance may
pertain to none,
one or more
classes.

� An instance may
have none, one or
more properties.

� Instances cannot be
members of
owl:Nothing.

Student

UniFEStudent

UniBOStudent

UniBOAIStudent

Course

AICourse

attendsCourse

attendsCourse

attendsAICourse

Speaker
assists

fond_int_art

photographys_bragaglia

you
app_int_art

18

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

assists

OWL ONTOLOGIES

Terminology:

Class: a collection of
objects with similar
characteristics (same as
DL's concept)

� It may be a subclass

of another, inheriting
characteristics from
its parent superclass

(logical subsumption,
DL’s concept

inclusion).

� All classes are
subclasses of
olw:Thing (the root
class) and are
subclassed by
owl:Nothing (the
empty class)

attendsCourse

attendsCourse

attendsAICourse
fond_int_art

photography

you
app_int_art

s_bragaglia

Student

Course
UniBOStudent

UniBOAIStudent AICourse

Speaker

19

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

UniFEStudent

OWL ONTOLOGIES

Terminology:

Property: a direct binary
relation that specifies class
characteristics (same as
DL’s role)

� It may have domain
and range.

� It may be a subproperty
of another, inheriting
characteristics from its
parent superproperty

� As attribute of
instances, it links to RDF
literals (datatype
property, ex.:
hasName)

� Often it links two
instances (object
property); it may have
logical capabilities such
as being transitive,
symmetric, inverse and
functional.

Student

UniFEStudent

UniBOStudent

UniBOAIStudent

Course

AICourse

fond_int_art

photography

you
app_int_art

s_bragaglia

Speaker

attendsCourse

attendsCourse

attendsAICourse

assists

20

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

OWL ONTOLOGIES

Student

UniFEStudent

UniBOStudent

UniBOAIStudent

Course

AICourse

fond_int_art

photography

you
app_int_art

s_bragaglia

Speaker

attendsCourse

attendsCourse

attendsAICourse

assists

21

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

Terminology:

Property: a direct binary
relation that specifies class
characteristics (same as
DL’s role)

� It may have domain
and range.

� It may be a subproperty
of another, inheriting
characteristics from its
parent superproperty

� As attribute of
instances, it links to RDF
literals (datatype
property, ex.:
hasName)

� Often it links two
instances (object
property); it may have
logical capabilities such
as being transitive,
symmetric, inverse and
functional.

OWL ONTOLOGIES

Student

UniFEStudent

UniBOStudent

UniBOAIStudent

Course

AICourse

fond_int_art

photography

you
app_int_art

s_bragaglia

Speaker

attendsCourse

attendsCourse

attendsAICourse

assists

22

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

Terminology:

Property: a direct binary
relation that specifies class
characteristics (same as
DL’s role)

� It may have domain
and range.

� It may be a subproperty
of another, inheriting
characteristics from its
parent superproperty

� As attribute of
instances, it links to RDF
literals (datatype
property, ex.:
hasName)

� Often it links two
instances (object
property); it may have
logical capabilities such
as being transitive,
symmetric, inverse and
functional.

OWL ONTOLOGIES

Terminology:

Operator: OWL
language supports
various operations on
classes such as union,
intersection and
complement

Enumeration,
cardinality and
disjointness are also
supported.

Such operations are
usually referred as
restrictions (and
expressions,
backward
compatibility)

Student

UniFEStudent

UniBOStudent

UniBOAIStudent

Course

AICourse

attendsCourse

attendsCourse

attendsAICourse

Speaker
assists

fond_int_art

photographys_bragaglia

you
app_int_art

23

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

DEVELOPING ONTOLOGIES

A possible development process involves:

1. Analyze the domain and the goal of the ontology

2. Determine the key concepts of the domain

� Glossary of terms

� Competency questions

3. Consider to reuse existing ontologies

� Upper / medium / lower ontologies (Greek temple model)

� Ontologies patterns

4. Organize concepts in classes e hierarchies among classes

5. Determine the properties of the classes

6. Add constraints (allowed values) on the properties

7. Create the instances

8. Assign values to the properties for each instance

9. Verify the ontology and release it

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

24

DEVELOPING ONTOLOGIES

� Purposes:

� Export (data export, knowledge export, etc.)

� Modeling (formalization of steps during development, etc.)

� Interoperability between different systems

� Tools:

� Too much, at the moment! Almost any competitor proposes
its own tool due to the big expectations…

� Remarkable editors are (just to name a few): Protégé,
TopBraid Composer, Swoop, DOME, NeOn, WSMT, etc.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

25

PROTÉGÉ 3.4.4

Editing functions are
split in different tabs:

� Metadata:
overview of the
ontology

� OWL Classes:
concepts insertion
and organization

� Properties: roles
definition and
customization

� Individuals: object
introduction and
composition

� Forms: form
definition for data
insertion

� SWRL Rules: rule
definition that
triggers on existing
data

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

26

http://protege.stanford.edu/download/registered.html

OWL CLASSES TAB

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

27

OWL CLASSES TAB

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

28

Class

Explorer
(add/

rearrange/

remove classes)

Class

Annotations

Necessary & Sufficient

Class Restrictions
––

Necessary

Class Restrictions

Disjointness

Definitions

PROPERTIES TAB

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

29

PROPERTIES TAB

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

30

Property

Explorer
(both datatype

and object)

Property

Annotations

Property

Domain

Property

Range

Property

Axioms

INDIVIDUALS TAB

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

31

INDIVIDUALS TAB

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

32

Instance

Explorer
(add/

rearrange/

remove

instances)

Instance

Annotations

Inherited

Instance

Properties

Class

Explorer

AN INTRODUCTORY EXAMPLE

� Suppose the domain to capture is the following:

In logic, each statement has a text and has a truth
value depending on the value of its elements.
Statements are identified with unique numeric ids.
Allowed truth values are true and false.
A tautology is a statement that is true by definition,
for any value of its elements.
Contradictions are the opposite of tautologies.

� For example “A crow flies when the sun goes down.” is
a statement, “All crows are black or there is one that is
not.” is a tautology and “Every crow is either
completely black and completely white.” is a
contradiction.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

33

AN INTRODUCTORY EXAMPLE

� The following text analysis is possible:

In logic, each statement has a text and has a truth

value depending on the value of its elements.

Statements are identified with unique numeric ids.

Allowed truth values are true and false.

A tautology is a statement that is true by definition,

for any value of its elements.

Contradictions are the opposite of tautologies.

� The identified terms and attributes should be
reported into a glossary.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

34

AN INTRODUCTORY EXAMPLE

� The given text may lead to the following competency
questions:

� What defines a statement? A text.

� What identifies a statement? A numeric id.

� What resolves a statement to? A truth value.

� What truth values are valid? True and false.

� What is a tautology? A statement always true.

� What is a contradiction? The opposite of a tautology.

Note: this approach considers a bit of information at a time instead
of the whole at once. Development is easier but end result is less
uniform and reuse is more difficult.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

35

AN INTRODUCTORY EXAMPLE

� Due to the nature and size of the domain, no
existing ontology will be used.

� Create a new ontology and introduce the
identified items:

� Classes: Statement, Value

� Properties: hasId, hasText, hasValue

� Instances: a few examples like the proposed one.

� Values: strings, integers, etc.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

36

AN INTRODUCTORY EXAMPLE

REASONING TASKS

� Under “Reasoning” menu, select “Pellet 1.5.2” as
default reasoner and

� Check the consistency of current ontology

� Classify automatically the classes entered so far

� Compute inferred types for instances

Note: Ontology should be consistent and explicit.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

37

DETECTING

CONSISTENCY ERRORS

� Sometimes it happens that two or more concepts of
the ontology inadvertently conflicts with each other

� Detecting and fixing such conflicts may be difficult,
especially when dealing with large projects

� This is where the consistency check comes in handy!

� As an example, introduce Tautology as a top-level
class restriction that hasValue only True and
Contradiction as a Tautology that instead hasValue

only False

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

38

DETECTING

CONSISTENCY ERRORS

� If you run the consistency
check task again, the
inconsistency is detected and
highlighted in red!

� To fix the error, you have to
identify the colliding
concepts in the editor panel
of inconsistent class or
property and modify them
properly

� An extension which directly
identifies the colliding
concepts is being discussed

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

39

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

DETECTING

CONSISTENCY ERRORS

� If you run the consistency
check task again, the
inconsistency is detected and
highlighted in red!

� To fix the error, you have to
identify the colliding
concepts in the editor panel
of inconsistent class or
property and modify them
properly

� An extension which directly
identifies the colliding
concepts is being discussed

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

40

In this case, the error is due to the
definition of Contradiction:
• hasValue only False

• hasValue only True (inherited)
and
• True disjoint with False

The error is fixed by simply stating that
it is a Statement and not a Tautology!

CLASSIFYING CLASSES

IN TAXONOMIES

� Despite being top-level classes, Tautology and
Contradiction are somehow related with
Statement

� The classify taxonomy task successfully
recognizes such dependency and rearrange them
as sub-classes of Statement

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

41

CLASSIFYING CLASSES

IN TAXONOMIES

� Despite being top-level classes, Tautology and
Contradiction are somehow related with
Statement

� The classify taxonomy task successfully
recognizes such dependency and rearrange them
as sub-classes of Statement

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

42

This is due to the
fact that they
both use
hasValue

property whose
domain is
actually
Statement

INFERRING TYPES FOR

INSTANCES

� Having introduced instances that appear to be a
Tautology and a Contradiction, we expect that the
compute inferred types task recognizes them
accordingly…

� …but all the instances are still reported only as
Statements! What’s wrong?

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

43

INFERRING TYPES FOR

INSTANCES

� Let’s have another try:
Introduce DefinedStatement as a top-level restriction
class that hasValue some (True or False) and run the
compute inferred types task again…

� …this time it seems to work! What’s wrong?

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

44

OPEN WORLD VS. CLOSE WORLD

ASSUMPTION

� Unlike Prolog, SQL and many other languages, OWL
(and DL in general) adopts the Open World

Assumption instead of the Close World Assumption

� CWA implies that everything not explicitly asserted
is false,

� OWA states that we cannot speculate on something
that is not explicitly asserted since it is undefined

� Ex: asserting that “Huey, Dewey and Louie are Donald

Duck’s nephews” means that Donald Duck has no
other nephews in CWA, while this is not due in OWA

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

45

OPEN WORLD VS. CLOSE

WORLD ASSUMPTION

� Due to the Open World Assumption, every restriction involving
the keywords only, exactly and max cannot help inferring types
for instances

� The reasoner, in fact, cannot perform such inference because it
suppose the presence of information that may violate the
restrictions even if it is not aware of it

� This limitation is overcome by introducing the so-called Closure
Axioms involving

� The definition of classes with the same necessary restrictions

� The introduction of instances as members of such classes

Note: This method makes the model correct but some attempts of
deducing things become quite useless…

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

46

OPEN WORLD VS. CLOSE

WORLD ASSUMPTION

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

47

Inferred types for
instances are
correctly recognized
after the introduction
of closure axioms

Also note the final
taxonomy for the
model as classified by
the reasoner

RDF & SPARQL QUERIES

� Any RDF graph is a collection of triples:

� Each part of the triples is said node

� Nodes referring to classes, properties or instances are
said resources

� Resources are represented with URIs, which can be
abbreviated as prefixed names

� Objects can also be literals (strings, integers,
booleans, etc.)

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

48

subject predicate object

RDF & SPARQL QUERIES

Every SPARQL query comprises:

� Prefix declaration to abbreviate URIs (opt.)

� Dataset definition to include RDFs (opt.)

� Result clause to state expected data

� Query pattern to specify context to query

� Solution modifiers to rearrange results (opt.)

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

49

S
P

A
R

Q
L

q
u

e
ry

RDF & SPARQL QUERIES

Every SPARQL query comprises:

prefix declarations

PREFIX foo: <http://example.com/resources/>

...

dataset definition

FROM ...

result clause

SELECT ...

query pattern

WHERE {

...

}

solution modifiers

ORDER BY ...

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

50

S
P

A
R

Q
L

q
u

e
ry

RDF & SPARQL QUERIES

Ex.: Find the name of all the persons in current ontology

SELECT ?name

WHERE {

?person :hasName ?name .

}

� SPARQL variables start with a ? and can match any node
(resource or literal) in the RDF dataset

� Triple patterns are just like triples, except that its parts can be
replaced with variables

� Queries may have several triple patterns, each ending with .
� SELECT returns a table of values that satisfy the query

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

51

RDF & SPARQL QUERIES

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

52

FOAF Ontology

�Revolves
around the
class Person

�Aggregates
data around
persons, in
terms of both
resources and
literals

�Associates

persons, each
to another

RDF & SPARQL QUERIES

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

53

FOAF Ontology

�Revolves
around the
class Person

�Aggregates
data around
persons, in
terms of both
resources and
literals

�Associates

persons, each
to another

PREFIX DECLARATION

Ex.: Find all the people that have name and email address using the external

FOAF (Friend of a Friend) ontology

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *

WHERE {

?person foaf:name ?name ;

foaf:mbox ?email . # ?person foaf:mbox ?email .

}

� The * selects all the variables that are mentioned in the query

� The ; allows two consecutive triple patterns to share the subject

� Multiple triple patterns with the same subject explore multiple properties

about the resource at the same time

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

54

DATASET DEFINITION

Ex.: Find the homepage of anyone known by Tim Berners-Lee

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX card: <http://www.w3.org/People/Berners-Lee/card#>

SELECT ?homepage

FROM <http://www.w3.org/People/Berners-Lee/card>

WHERE {

card:i foaf:knows ?known .

?known foaf:homepage ?homepage .

}

� FROM allows to specify which dataset (instances) to consider

� Two consecutive triple patterns sharing a variable as object and subject

respectively allows to traverse links in the graph

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

55

RESULT CLAUSE

� This is the most important section of SPARQL
queries together with the other non-optional
section Query Pattern

� Several ways to customize it:

� Alternatives: CONSTRUCT, ASK, DESCRIBE

� Modifiers: DISTINCT

� Aggregate functions: COUNT, MIN, MAX, SUM, etc.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

56

RESULT CLAUSE: DISTINCT

Ex.: Find the name of all the persons with an email or an homepage

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?name

WHERE {

{ ?person foaf:mbox ?mbox }

UNION

{ ?person foaf:homepage ?homepage }

?person foaf:name ?name .

}

� If a person has both email and homepage, its name will appear twice:

DISTINCT allows to remove duplicates

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

57

RESULT CLAUSE: CONSTRUCT

Ex.: Convert all the FOAF data from Tim Berners-Lee ontology into VCard data

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
CONSTRUCT {

?X vCard:FN ?name .

?X vCard:URL ?url .

?X vCard:TITLE ?title .

}

FROM <http://www.w3.org/People/Berners-Lee/card>
WHERE {

OPTIONAL { ?X foaf:name ?name . FILTER isLiteral(?name) . }

OPTIONAL { ?X foaf:homepage ?url . FILTER isURI(?url) . }

OPTIONAL { ?X foaf:title ?title . FILTER isLiteral(?title) . }

}

� CONSTRUCT returns an RDF graph instead of a table of values
� The equivalent SELECT query is performed and the returned values are used to fill the

template
� Query patterns involving unbound variables are discarded

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

58

RESULT CLAUSE: ASK

Ex.: Check out if Tim Berners-Lee knows me

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX card: <http://www.w3.org/People/Berners-Lee/card#>

ASK

FROM <http://www.w3.org/People/Berners-Lee/card>

WHERE {

card:i foaf:knows :stefano .

}

� ASK returns true or false depending on the query pattern

� WHERE is always optional (ASK queries usually drop it to ease the reading)

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

59

RESULT CLAUSE: DESCRIBE

Ex.: Retrieve any piece of information about the Ford Motor Company

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

DESCRIBE ?ford

WHERE {

?ford foaf:name "FORD MOTOR CO" .

}

� DESCRIBE returns all the triples involving the given resource(s)

� Returned information may vary depending on the implementation

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

60

RESULT CLAUSE:
AGGREGATE FUNCTIONS

Ex.: What are the top interests of LiveJournal users interested in Harry Potter?

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?interest COUNT(*) AS ?count
WHERE {

?person foaf:interest
<http://www.livejournal.com/interests.bml?int=harry+potter> .
?person foaf:interest ?interest

}

GROUP BY ?interest ORDER BY DESC(COUNT(*)) LIMIT 10

� Only supported by some SPARQL implementations
� Aggregate functions calculate single values from sets of results
� They include: COUNT, MIN, MAX, SUM, etc.
� Sometimes used with clauses that breaks the results into groups before

applying the aggregate function(s)

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

61

QUERY PATTERN

� As said, this non-optional section plays an
important role in SPARQL queries together with
Result Clause

� Several ways to customize it:

� Operators: FILTER, OPTIONAL, UNION

� Named Graphs: GRAPH

� Nested clauses: SELECT, etc.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

62

QUERY PATTERN: FILTER

Ex.: Find the name of all the person located only near a given geospatial point

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX geo: <http://www.geonames.org/ontology/ontology_v2.0_Full.rdf>
SELECT ?name
WHERE {

?person foaf:name ?name .

?person foaf:based_near ?loc .

?loc geo:lat ?lat .

?loc geo:long ?long .

FILTER (?lat > 50 && ?lat < 100 &&
?long > 25 && ?long < 75) .

}

� FILTER uses boolean contraints to ignore unwanted results
� It may lead to duplicates in results (how to handle that?)

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

63

QUERY PATTERN: FILTER

� Many operators are allowed in a FILTER declarations:

� Logical: !, &&, ||

� Math: +, -, *, /

� Comparison: =, !=, >, <, etc.

� SPARQL tests: isURI, isBlank, isLiteral, bound

� SPARQL accessors: str, lang, datatype

� Other: sameTerm, langMatches, regex

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

64

QUERY PATTERN: OPTIONAL

Ex.: Find the name of all the persons along with their image, homepage and
location

The wrong way...

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?img ?home ?loc
WHERE {

?person foaf:name ?name ;

foaf:img ?img .

foaf:homepage ?home .

foaf:based_near ?loc .

}

� This query does not return all the expected values: what is wrong?
� The pattern above requires every piece of data to be available…

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

65

QUERY PATTERN: OPTIONAL

Ex.: Find the name of all the persons along with their image, homepage and
location

The right way...

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?img ?home ?loc
WHERE {

?person foaf:name ?name ;

OPTIONAL { ?person foaf:img ?img }

OPTIONAL { ?person foaf:homepage ?home }

OPTIONAL { ?person foaf:based_near ?loc }

}

� Not everyone has an image, homepage or location
� OPTIONAL tries to match the pattern, but does not fail the whole query in the

specific match fails
� In case of failure, any unassigned variable in the pattern remain unbound

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

66

QUERY PATTERN: UNION

Ex.: Find the name of all the persons with an email or an homepage

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?name

WHERE {

{ ?person foaf:mbox ?mbox }

UNION

{ ?person foaf:homepage ?homepage }

?person foaf:name ?name .

}

� UNION forms a disjunction of two graph patterns

� Solution to both sides are included in the results

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

67

QUERY PATTERN: GRAPH

Ex.: Find the name of all the people involved in at least three distinct events

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX g: <http://data.example.com/graphs/>
SELECT DISTINCT ?name

FROM NAMED g:g1

FROM NAMED g:g2

FROM NAMED g:g3

WHERE {

?person foaf:name ?name .

GRAPH ?g1 { ?person a foaf:Person }

GRAPH ?g2 { ?person a foaf:Person }

GRAPH ?g3 { ?person a foaf:Person }

FILTER (?g1 != ?g2 && ?g1 != ?g3 && ?g2 != ?g3) .

}

� So far queries have been again a single graph (default graph)
� Additional graphs may be added with FROM NAMED clauses
� GRAPH then allows portions of the query to match against the named graphs
� a is a shortcut for the rdf:type predicate

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

68

QUERY PATTERN: GRAPH

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

69

QUERY PATTERN:
NESTED CLAUSES

Ex.: Retrieve the second page of names and emails of people in Tim Berners-Lee's
FOAF file, given that each page has 10 people

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email

FROM <http://www.w3.org/People/Berners-Lee/card>
WHERE {

{ SELECT DISTINCT ?person ?name

WHERE {

?person foaf:name ?name

} ORDER BY ?name LIMIT 10 OFFSET 10
}

OPTIONAL { ?person foaf:mbox ?email }

}

� The sub-query limits the amount of person to consider in advance instead of
pruning the returned values

� Not available on all the implementations

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

70

SOLUTION MODIFIERS

� Solution modifiers affect the values returned by
the query in several ways

� Two class of solution modifiers are available:

� ORDER BY is used to sort the solution on values of
one or more variables

� OFFSET and LIMIT are used to take a slice of
the solution

� Specific examples have been introduced in
previous sections

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

71

FUTURE DIRECTIONS

FOR SPARQL

� Unfortunately, a few pieces of SPARQL are not yet
standard: full-text search, parameters passing,
querying more graphs at a time, direct support of XML

� A new version of SPARQL was chartered in March
2009; planned features are: insert/update/delete
capabilities, negation, improvements on aggregate
functions, query with constants/functions/
expressions, standard for sub-query

� The following features are also being discussed:
interaction with OWL/RDF-S/RIF, recursive property
paths, basic federated query

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

72

SPARQL SUCCEEDS

WHERE OWL FAILS?

� SPARQL is complementary to OWL and is based on Closed World
Assumption

� Thus it can be used to overcome the limitations seen before

Note: SPARQL Query panel can be accessed under “Reasoning” menu with
“Open SPARQL Query panel” command:

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

73

SPARQL SUCCEDS

WHERE OWL FAILS?

Ex.: Find the text of all the statements that are tautology

SELECT ?text

WHERE {

find statements that has value true

?statement a :Statement ;

:hasValue True .

OPTIONAL {

find out if it also has value false, but use a different name

?statement2 a :Statement ;

:hasValue False .

FILTER (?statement2 = ?statement) .

}

keep only the statements that failed to have value false

FILTER (!bound(?statemnt2)) .
?statement :hasText ?text .

}

� Together, OPTIONAL and the !bound(...) allow to query for things that are not asserted in the dataset
� A similar technique allows for other types of universally quantified queries (such as max)

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

74

EXERCISE 0

1. Download, extract and open the pizza ontology in the

Protégé editor

2. Add a new class, the “ChesaniPizza”.

� It must have some cheese

� It must have a toping based on meat

� It must be an “interesting pizza”

� It must be vegetarian

3. Check the consistency of this pizza… and solve

possible problems!

4. Then try to transform it into a definition

� Which pizza are subsumed by ChesaniPizza?

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

75

EXERCISE 0

INDIVIDUALS

1. Create an individual, e.g., “pizzaTonight”

2. Add some topping:

� Mozz_bufala

� Luganega (o lucaneca)

� Pomodoro_di_pachino

� Melanzane

3. Add these toppings to pizzaTonight (create the

needed individuals…)

4. Try to classify it: to which class this pizza belong?

Why?

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

76

EXERCISE 0

DOMAIN/RANGE ASSERTIONS

1. Create the “Cake” class, as subclass of Food

2. Specify that Cake “hasTopping some

FruitTopping”

3. Invoke the reasoner… where it is classified?

Why?

4. Specify “Cake disjoint with Pizza”, and re-invoke

the reasoner

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

77

EXERCISE 0

SPARQL

1. Create topping “Mortadella”

2. Create instance m1 of Mortadella

3. Create two instances p1 and p2 of pizza

4. Specify “p1 hasTopping m1”

5. Check the following queries:

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

78

EXERCISE 0

SPARQL
1. All the instances of Pizza
SELECT ?p
WHERE { ?p rdf:type :Pizza . }

2. Find the pizza that has m1 as topping
SELECT ?p
WHERE {
?p :hasTopping :m1 .
}

3. Find all the pizza that has some mortadella…
SELECT ?p
WHERE {
?p :hasTopping ?t .
?t rdf:type :Mortadella .
}

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

79

EXERCISE 1

Ex.: Design an ontology containing statements representing the
following sentences:

� A doll is a kind of toy
� Young women are defined as young persons that are also

female
� A young person cannot be both a young man and a young

woman
� Young persons are either young men or young women
� Lenore and Emily are famous dolls
� All young women play with some doll
� Young women play only with famous dolls
� Young men play with at least one toy

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

80

EXERCISE 1

Ex.: Design an ontology containing statements representing the

following sentences:

� Clara is a young woman

� Clara and Laura are different individuals

� Lalu is the same person as Laura

� To dress a toy is a special case of playing, where the toy is a doll

� To be dressed by a young person is the inverse relation of a

young person dressing a doll

� To be ancestor of a person is a transitive relation that holds

between persons

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

81

EXERCISE 2

Context

An online music database wishes to semantically represent their data about musicians,
albums, and performances, in order to be able to provide better search functions to their
users, i.e. by querying the knowledge base instead of using keyword queries. Below is an
example of what they typically would like to store, and at the bottom you find the
competency questions developed as requirements for the ontology.

Story: music and bands

The current configuration of the “Red Hot Chili Peppers” are: Anthony Kiedis (vocals), Flea

(bass, trumpet, keyboards, and vocals), John Frusciante (guitar), and Chad Smith (drums).

The line-up has changed a few times during they years, Frusciante replaced Hillel Slovak in

1988, and when Jack Irons left the band he was briefly replaced by D.H. Peligro until the

band found Chad Smith. In addition to playing guitars for Red hot Chili Peppers Frusciante

also contributed to the band “The Mars Volta” as a vocalist for some time.

From September 2004, the Red Hot Chili Peppers started recording the album “Stadium

Arcadium”. The album contains 28 tracks and was released on May 5 2006. It includes a

track of the song “Hump de Bump”, which was composed in January 26, 2004. The critic

Crian Hiatt defined the album as "the most ambitious work in his twenty-three-year

career". On August 11 (2006) the band gave a live performance in Portland, Oregon (US),

featuring songs from Stadium Arcadium and other albums.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

82

EXERCISE 2

Competency questions (CQs) and contextual statements of music and bands

1. What instruments does a certain person play?

2. What are the members of a certain band during a certain time period?

3. What role does a certain person have in a certain band during a certain time?

4. During what time period was a certain album recorded?

5. How many tracks does a particular album contain?

6. When was a certain album released?

7. What song is a specific track a recording of?

8. When was a certain song composed?

9. What does a certain critic say about a certain album?

10. When did a certain performance take place?

11. What songs were played in a certain performance?

12. Where did a certain performance take place?

13. In what region is a certain city located?

14. In what country is a certain region located?

Contextual statement:

� An album always contains at least one track.

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

83

REFERENCES

� W3C:

� http://www.w3.org/

� Protégé:

� http://protege.stanford.edu/

� OWL:

� http://www.w3.org/TR/owl-features/

� http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

� SPARQL:

� http://www.w3.org/TR/rdf-sparql-query/

� http://jena.sourceforge.net/ARQ/Tutorial/

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

84

CONTACTS

� If you have any questions, please send me an
email or call me:

E-mail: stefano.bragaglia@unibo.it

Tel: 051-20.93086

AN INTRODUCTION TO ONTOLOGY DEVELOPMENT

85

