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Abstract

Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the simplicity of their
individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish
complex tasks that in some cases far exceed the individual capacities of a single ant. The study of ant colonies behavior and
of their self-organizing capacities is interesting for computer scientists because it provides models of distributed organization
which are useful to solve difficult optimization and distributed control problems. In this paper we overview some models
derived from the observation of real ants, emphasizing the role played bystigmergyas distributed communication paradigm,
and we show how these models have inspired a number of novel algorithms for the solution of distributed optimization and
distributed control problems. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ant colonies have always fascinated human beings.
Books on ants, ranging from pure literature [52,87] to
detailed scientific accounts of all the aspects of their
life [31,42,43], have often met extraordinary public
success. What particularly strikes the occasional ob-
server as well as the scientist is the high degree of
societal organization that these insects can achieve in
spite of very limited individual capabilities. Ants ap-
peared on the earth some 100 millions of years ago,
and their current population is estimated to be around
1016 individuals [43]. An approximate computation
tells us that their total weight is the same order of
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magnitude as the total weight of human beings; like
human beings, they can be found virtually everywhere
on the earth. Ants are undoubtedly one of the most
successful species on the earth today, and they have
been so for the last 100 million years. It is therefore
not surprising that computer scientists have taken in-
spiration from studies of the behavior of ant colonies,
and more generally of social insects, to design algo-
rithms for the control of multi-agent systems.

A particularly interesting body of work is the one
that focuses on the concept ofstigmergy, a particular
form of indirect communication used by social in-
sects to coordinate their activities. By exploiting the
stigmergic approach to coordination, researchers have
been able to design a number of successful algorithms
in such diverse application fields as combinatorial op-
timization, routing in communication networks, task
allocation in a multi-robot system, exploratory data
analysis, graph drawing and partitioning, and so on
[2,26].
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The termstigmergywas introduced by Grassé [39]
to describe a form of indirect communication me-
diated by modifications of the environment that he
observed in two species of termites:Bellicositermes
Natalensisand Cubitermes. Grassé’s original defini-
tion of stigmergy was:

“Stimulation of workers1 by the performance they
have achieved”.
Although Grassé first introduced the term stigmergy

to explain the behavior of termites societies, the same
term has later been used to indicate indirect commu-
nication mediated by modifications of the environ-
ment that can be observed also in other social insects
[80].

Nest building in termites is the typical example of
stigmergy, and is also the original example used by
Grassé to introduce the concept. Termite workers use
soil pellets, which they impregnate with pheromone
(i.e., a diffusing chemical substance) to build pil-
lars. Two successive phases take place during nest
reconstruction [39]. First, a non-coordinated phase
occurs which is characterized by a random depo-
sition of pellets. This phase lasts until one of the
deposits reaches a critical size (Fig. 1). Then, a co-
ordination phase starts if the group of builders is
sufficiently large and pillars emerge. The existence
of an initial deposit of soil pellets stimulates work-
ers to accumulate more material through a positive
feedback mechanism, since the accumulation of ma-
terial reinforces the attractivity of deposits through
the diffusing pheromone emitted by the pellets [6].
This autocatalyticsnowball effect leads to the coor-
dinated phase. If the density of builders is too small,
the pheromone disappears between two successive
passages by the workers, and the amplification mech-
anism cannot work, which leads to a non-coordinated
behavior. The system undergoes a bifurcation at this
critical density: no pillar emerges below it, but pil-
lars can emerge above it. This example therefore
illustrates positive feedback (the snowball effect),
negative feedback (pheromone decay), the amplifica-
tion of fluctuations (pillars could emerge anywhere),
multiple interactions (through the environment), the
emergence of structure (i.e., pillars) out of an initially
homogenous medium (i.e., a random spatial distri-
bution of soil pellets), multistability (again, pillars

1 Workers are one of the castes in termite colonies.

Fig. 1. An example of stigmergic process as it appears in the
construction of pillars in termites. Assume that the architecture
reaches stateS0, which triggers responseR0 from worker I . S0

is modified by the action ofI (e.g., I may drop a soil pellet),
and transformed into a new stimulating configurationS1 that may
in turn trigger a new responseR1 from I or any other workerIn
and so forth. The successive responsesR1, R2, . . . , Rn may be
produced by any worker carrying a soil pellet. Each worker creates
new stimuli in response to existing stimulating configurations.
These new stimuli then act on the same termite or on any other
worker in the colony. Such a process, where the only relevant
interactions taking place among the agents are indirect, through
the environment which is modified by the other agents, is also
called sematectonic communication [89].



M. Dorigo et al. / Future Generation Computer Systems 16 (2000) 851–871 853

Fig. 2. Four simulation steps showing the temporal evolution of the structure built by termites in a 2D system. This simulation shows
the evolution of the density of building material (on thez-axis) used by termites to build their nest obtained from Deneubourg’s model
[15]. The simulation begins with a random distribution of building material in space (step 1) and the regularity of the inter-pillar spacing
emerges progressively over time (steps 2, 3 and 4). (From [82]; reprinted by permission of Birkhävser Verlag.)

may emerge anywhere) and bifurcation which make
up the signatures of self-organized phenomena. From
the experimental observations, Deneubourg [15] de-
signed a chemotaxis-based reaction–diffusion model
that exhibits the desired properties for appropriate
parameter values. Fig. 2 shows the two-dimensional
spatial distribution of pillars obtained with his model.
In this model, coordination emerges out of indirect
(stigmergic) interactions among workers.

In this paper anant algorithmis informally defined
as a multi-agent system inspired by the observation of
some real ant colony behavior exploiting stigmergy.
In ant algorithms the agents are calledartificial ants,
or often simplyants, and coordination among ants is
achieved by exploiting the stigmergic communication
mechanism.

The implementation of ant algorithms is made pos-
sible by the use of so-calledstigmergic variables, i.e.,
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variables that contain the information used by artificial
ants to indirectly communicate. In some cases, as dis-
cussed, e.g., in Section 2, the stigmergic variable is a
specifically defined variable used by ants to adaptively
change the way they build solutions to the considered
problem. In other cases, as discussed in Sections 3 and
4, the stigmergic variable is one of the problem vari-
ables: in this case a change in its value determines not
only a change in the way a solution to the problem is
built, but also a direct change in the solution of the
problem itself.

In the rest of this article we provide a number
of examples of ant algorithms and for each example
we highlight the role played by stigmergy. Each sec-
tion deals with a particular behavior observed in ant
colonies: foraging (Section 2), division of labor (Sec-
tion 3), and clustering (Section 4). The first part of each
section provides a brief description of the observed
phenomenon followed by a description of models de-
veloped by ethologists to understand the phenomenon;
engineering-oriented applications, that make use of
the emergent behavior of ant colonies, are then pre-
sented. It is worth noting that not all kinds of ant algo-
rithms are equally advanced: some of them are among
the best available approaches for selected problems,
while others are just proofs of concept and further
work needs to be done to fully evaluate their poten-
tialities. Therefore, the various sections of this review
article may emphasize different aspects, the biology
or the engineering side. Sections that emphasize appli-
cations are useful because they show very clearly the
way our understanding of how ants collectively solve
problems can be applied to design algorithms and dis-
tributed problem-solving devices; those emphasizing
the biology are useful because, we believe, they pro-
vide new ideas to design new types of algorithms and
distributed artificial devices.

2. Pheromone trail following and discrete
optimization

2.1. Foraging in ants

A lot of ant species have a trail-laying/trail-
following behavior when foraging [42]: individual
ants deposit pheromone while walking and for-
agers follow pheromone trails with some probability.
Deneubourg et al. [16] have shown with an ingenious

Fig. 3. Experimental setup (insert) and percentage of ants that
used lower and upper branches as a function of time. Modified
from Deneubourg et al. [16].

experiment, run with ants of the speciesLinepithema
humile, that this behavior can explain how ants find
the shortest path between their nest and a food source.
The experimental setup is the following.

A food source is connected to an ant nest by a bridge
with two equally long branches (Fig. 3). When the
experiment starts the ants select randomly, with equal
probability, one of the branches. Because of statistical
fluctuations one of the two branches is chosen by a
few more ants than the other and therefore is marked
by a slightly higher amount of pheromone. The greater
amount of pheromone on this branch stimulates more
ants to choose it, and so on [17]. This autocatalytic
process leads very soon the ant colony to converge
towards the use of only one of the two branches.

The experiment can also be run using a bridge with
two branches of different length. In this case, the first
ants coming back to the nest are those that took the
shortest path twice (to go from the nest to the source
and to return to the nest), so that more pheromone is
present on the short branch than on the long branch
immediately after these ants have returned, stimulating
nestmates to choose the short branch (Fig. 4). This has
been calleddifferential length effect[25] and explains
how ants in the long run end up choosing the shortest
of the two paths without using any global knowledge
about their environment. Differential length effect and
pheromone based autocatalysis are at the earth of some
successful ant algorithms for discrete optimization, in
which an artificial pheromone plays the role of stig-
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Fig. 4. (a) Experimental setup and drawings of the selection of the short branches by a colony ofLinephitema humile, 4 and 8 min after
the bridge was placed. (b) Distribution of the percentage of ants that selected the shorter branch overn experiments. The longer branch
is r times longer than the short branch. The second graph (n = 18, r = 2) corresponds to an experiment in which the short branch is
presented to the colony 30 min after the long branch: the short branch is not selected, and the colony remains trapped on the long branch.
Modified from Goss et al. [38].

mergic variable, as explained in the following section.
It is also interesting to note that in some ant species
the amount of pheromone deposited is proportional
to the quality of the food source found: paths that
lead to better food sources receive a higher amount
of pheromone. Similarly, in the ant algorithms pre-
sented in this section artificial ants deposit a quantity
of pheromone proportional to the quality of the solu-
tion they found.

2.2. Ant System and the Traveling Salesman Problem

Ant System (AS) was the first algorithm [24,29]
inspired by the trail-following behavior of ants to
be applied to a discrete optimization problem. The
problem chosen for the first experiments was the

Traveling Salesman Problem (TSP). In the TSP, one
has to find a closed tour of minimal length connecting
n given cities. Each city must be visited once and only
once. Letdij be the distance between citiesci andcj .
The problem can either be defined in Euclidean space
(in which casedij is simply the Euclidean distance
between citiesi and j ), or can be more generally
defined on a graphG = (V ,E), where the cities
are the vertices (V ) and the connections between the
cities are the edges of the graph (E). Note that the
graph need not be fully connected and the distance
matrix need not be symmetric: if it is asymmetric
the corresponding problem is called the asymmetric
TSP.

In AS the ants build solutions in parallel by visiting
sequentially the cities of the graph. On each edge(i, j)
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of the TSP graph anartificial pheromone trailτij (t)
is maintained. The valuesτij (t) are used by ants to
direct the way they build tours. They are updated by
means of a reinforcement procedure: once an ant has
completed a tour it updates the edges it has crossed
by adding a quantity of pheromone proportional to the
goodness of the tour.

More formally, at iteration2 t , after completing its
tour Tk(t), the kth ant lays a quantity of pheromone
1τkij (t) on each edge(i, j) belonging toTk(t);1τkij (t)
is a function of the lengthLk of tour Tk(t):

1τkij (t) =
{
Q/Lk if edge (i, j) ∈ Tk(t),
0 if edge (i, j) /∈ Tk(t),

(1)

whereQ is an adjustable parameter.
Ants build solutions using a probabilistic transition

rule. The probabilitypkij (t) with which an antk in city
i at iterationt chooses the next cityj to move to is a
function of the following:
• Whether or not cityj has already been visited. For

each ant, a list is maintained that contains all the
cities that the ant has already visited in order to
prevent cities from being visited more than once;
the list grows within one tour until it is full, and
is then emptied at the end of the iteration; we call
Jk(i) the set of cities that remain to be visited by
antk when antk is in city i.
• An heuristic measureηij of the desirability of

adding edge(i, j) to the solution under construc-
tion. In the TSP a reasonable heuristic isηij =
1/dij , i.e., the inverse of the distance between cities
i andj .
• The amountτij (t) of artificial pheromoneon the

edge connectingi andj .
Formallypkij (t) is given by

pkij (t) =



[τij (t)]α[ηij ]β∑
l∈Jk(i)[τil(t)]

α[ηil ]β
if j ∈ Jk(i),

0 if j /∈ Jk(i),
(2)

whereα andβ are two adjustable parameters that con-
trol the relative influences of pheromone trailτij (t)
and heuristic desirabilityηij . If α = 0, the closest
cities are more likely to be selected: this corresponds
to a classical stochastic greedy algorithm (with multi-

2 The iteration counter is incremented by 1 when all ants have
completed a tour.

ple starting points since ants are initially randomly dis-
tributed on the cities). If on the contraryβ = 0, only
pheromone amplification is at work: this method will
lead the system to astagnationsituation, i.e., to a situa-
tion in which all the ants generate a same, sub-optimal
tour [24,29,30]. The trade-off between edge length and
trail intensity therefore appears to be necessary.

Finally, AS could not perform well without
pheromone evaporation. In fact, because the initial
exploration of the search space is mostly random, the
values of the pheromone trails in the initial phases are
not very informative and it is therefore necessary that
the system slowly forgets these initial values to allow
the ants to move towards better solutions. Pheromone
decay is implemented by introducing a coefficient of
evaporationρ,0< ρ ≤ 1, such that

τij (t + 1) = (1− ρ)τij (t)+1τij (t), (3)

where1τij (t) =
∑m
k=11τ

k
ij (t) andm is the number

of ants.
The initial amount of pheromone on edges is as-

sumed to be a small positive constantc (i.e., there is
an homogeneous distribution of pheromone att = 0).
The total numberm of ants (assumed constant over
time) is an important parameter. Too few ants will not
produce the expected synergistic effects of coopera-
tion3 because of the (otherwise necessary) process
of pheromone evaporation. On the contrary, too many
ants result in a less efficient computational system: the
quality of the results produced after a given number
of iterations does not improve significantly, but, due
to the higher number of ants, it takes longer to per-
form an algorithm iteration. Dorigo [24] suggests that
m = n, i.e., as many ants as there are cities in the
problem, provides a good trade-off.

Ant System has been tested on several relatively
small problems. The experimentally optimized value
of the parameters has been set toα = 1, β = 5,
ρ = 0.5 andQ = 100. Although the results obtained
were not state-of-the-art on the TSP [24,29,30], AS
compared well with other general purpose metaheuris-
tic methods, like simulated annealing, evolutionary
computation, and tabu search. But, most important,
AS gave rise to a whole set of successful applications

3 Remember the termites nest building behavior of Section 1:
as in that case, too few ants cannot overcome the evaporation of
pheromone and stigmergic coordination cannot take place.
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and extensions which have recently been unified in
a novel metaheuristic calledAnt Colony Optimization
(ACO).

2.3. The ACO metaheuristic

The ACO metaheuristic [25] is a novel metaheuris-
tic obtained a posteriori after a careful analysis of
the characteristics of a number of ant algorithms
inspired by the foraging behavior of ants (most of
these algorithms were strongly inspired by AS).
ACO algorithms, i.e., heuristic algorithms obtained
as instances of the ACO metaheuristic, can be used
to find feasible minimum cost paths over a graph
G = (C,L,W), where feasibility is defined with
respect to a set� of constraints. The graphG =
(C,L,W) and the constraints� are defined as fol-
lows: C = {c1, c2, . . . , cn} is a finite set of problem
components, L = {lcicj |ci, cj ∈ C} a finite set of
possibleconnectionsamong the elements ofC, W a
set of weights associated either to the componentsC

or to the connectionsL or to both, and�(C,L, θ) is
a finite set ofconstraintsassigned over the elements
of C andL (θ indicates that the set of constraints can
change over time). For example, in the TSP defined
in Section 2.2,C is the set of cities,L the set of edges
connecting cities,W the length of the edges inL, and
the constraints� impose that in any feasible solution
each city appears once and only once. A feasible path
over G is called a solutionψ and a minimum cost
path is an optimal solution and is indicated byψ∗;
f (ψ) is the cost of solutionψ , andf (ψ∗) the cost
of the optimal solution. In the TSP a solutionψ is
an Hamiltonian circuit andψ∗ the shortest feasible
Hamiltonian circuit.

In ACO algorithms a colony of ants concurrently,
asynchronously and incrementally build solutions of
the problem defined byG and�. Each antk starts
with a partial solutionψk(1) consisting of one ele-
ment (one of the components inC) and adds compo-
nents toψk(h) till a complete feasible solutionψ is
built, whereh is the step counter. Components to be
added toψk(h) are stochastically chosen in an appro-
priately defined neighborhood of the last component
added toψk(h). The ants stochastic choice is made by
applying a stochastic local decision policy that makes
use of local information available at the visited ver-
tices/components. Once an ant has built a solution,

or while the solution is being built, the ant evaluates
the (partial) solution and adds pheromone, i.e., infor-
mation about the quality of the (partial) solution, on
the components and/or the connections it used. This
pheromone information will direct the search of the
ants in the following iterations.

Besides ants’ activity, an ACO algorithm includes
apheromoneevaporation()procedure and an optional
daemonactions()procedure. Pheromone evaporation,
as it was the case in AS, is the process by which
the pheromone trail automatically decreases over time.
“Daemon” actions can be used to implement cen-
tralized actions which cannot be performed by sin-
gle ants. Examples are the activation of a local op-
timization procedure, or the collection of global in-
formation that can be used to decide whether it is
useful or not to deposit additional pheromone to bias
the search process from a non-local perspective. As a
practical example, the daemon can observe the path
found by each ant in the colony and choose to deposit
extra pheromone on the edges used by the ant that
made the shortest path. In most applications to com-
binatorial optimization problems theantsactivity(),
pheromoneevaporation() and daemonactions() pro-
cedures (see Fig. 5) are scheduled sequentially. Never-
theless, thescheduleactivities construct of the ACO
metaheuristic (Fig. 5) leaves the decision on how these
three procedures must be synchronized to the user,
that is left free to match synchronization policies to
the considered problems (e.g., in the applications to
routing in telecommunication networks the execution
of the three procedures is often interleaved).

The ACO metaheuristic, which has been introduced
in [25] where the interested reader can find a more de-
tailed formal definition, has been successfully applied
to many discrete optimization problems, as listed in
Table 1. Among the most studied problems there are

Fig. 5. Outline of the ACO metaheuristic.
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Table 1
Current applications of ACO algorithmsa

Problem name Authors Algorithm name Year Main references

Traveling salesman Dorigo, Maniezzo and Colorni AS 1991 [24,29,30]
Gambardella and Dorigo Ant-Q 1995 [32]
Dorigo and Gambardella ACS and ACS-3-opt 1996 [27,28,33]
Stützle and Hoos MMAS 1997 [75,76,78]
Bullnheimer, Hartl and Strauss ASrank 1997 [8,10]

Quadratic assignment Maniezzo, Colorni and Dorigo AS-QAP 1994 [57]
Gambardella, Taillard and Dorigo HAS-QAPb 1997 [36,37]
Stützle and Hoos MMAS-QAP 1997 [74,77]
Maniezzo ANTS-QAP 1998 [53]
Maniezzo and Colorni AS-QAPc 1999 [56]

Scheduling problems Colorni, Dorigo and Maniezzo AS-JSP 1994 [12]
Stützle AS-FSP 1997 [71]
Bauer et al. ACS-SMTTP 1999 [1]
den Besten, Stützle and Dorigo ACS-SMTWTP 1999 [14]

Vehicle routing Bullnheimer, Hartl and Strauss AS-VRP 1997 [7,9]
Gambardella, Taillard and Agazzi HAS-VRP 1999 [35]

Connection-oriented network routing Schoonderwoerd et al. ABC 1996 [68,69]
White, Pagurek and Oppacher ASGA 1998 [88]
Di Caro and Dorigo AntNet-FS 1998 [22]
Bonabeau et al. ABC-smart ants 1998 [3]

Connection-less network routing Di Caro and Dorigo AntNet and AntNet-FA 1997 [20,21,23]
Subramanian, Druschel and Chen Regular ants 1997 [79]
Heusse et al. CAF 1998 [41]
van der Put and Rothkrantz ABC-backward 1998 [84,85]

Sequential ordering Gambardella and Dorigo HAS-SOP 1997 [34]
Graph coloring Costa and Hertz ANTCOL 1997 [13]
Shortest common supersequence Michel and Middendorf AS-SCS 1998 [58,59]
Frequency assignment Maniezzo and Carbonaro ANTS-FAP 1998 [54,55]
Generalized assignment Ramalhinho Lourenço and Serra MMAS-GAP 1998 [65]
Multiple knapsack Leguizaḿon and Michalewicz AS-MKP 1999 [48]
Optical networks routing Navarro Varela and Sinclair ACO-VWP 1999 [61]
Redundancy allocation Liang and Smith ACO-RAP 1999 [49]

aApplications are listed by class of problems and in chronological order.
bHAS-QAP is an ant algorithm which does not follow all the aspects of the ACO metaheuristic.
cThis is a variant of the original AS-QAP.

the traveling salesman, the quadratic assignment and
routing in telecommunication networks. When applied
to these problems ACO algorithms result to be com-
petitive with the best available heuristic approaches.
In particular we observe the following:
• Results obtained by the application of ACO algo-

rithms to the TSP are very encouraging (ACO al-
gorithms for the TSP are overviewed in [73]): they
are often better than those obtained using other gen-
eral purpose heuristics like evolutionary computa-
tion or simulated annealing. Also, when adding to

ACO algorithms local search procedures based on
3-opt [50], the quality of the results obtained [28,72]
is close to that obtainable by other state-of-the-art
methods.
• ACO algorithms are currently one of the best per-

forming heuristics available for the particularly
important class of quadratic assignment problems
which model real world problems [37,53,56,57].
• AntNet [21,23], an ACO algorithm for routing in

packet switched networks, outperformed a num-
ber of state-of-the-art routing algorithms for a set
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of benchmark problems. AntNet-FA, an extension
of AntNet for connection oriented network rout-
ing problems, also shows competitive performance
[23].
• HAS-SOP, an ACO algorithm coupled to a local

search routine, has improved many of the best
known results on a wide set of benchmark instances
of the sequential ordering problem (SOP) [34], i.e.,
the problem of finding the shortest Hamiltonian
path on a graph which satisfies a set of precedence
constraints on the order in which cities are visited.
ACO algorithms have also been applied to a num-

ber of other discrete optimization problems like the
shortest common supersequence problem, the vehi-
cle routing problem, the multiple knapsack, single
machine total tardiness, and others (see Table 1), with
very promising results.

3. Labor division and task allocation

3.1. Division of labor in ant colonies

Division of labor is an important and widespread
feature of life in ant colonies, and in social insects
in general (for a review, see, e.g., [63,67,70]). Social
insects are all characterized by one fundamental type
of division of labor, reproductive division of labor, a
main ingredient in the definition of eusociality.4 Be-
yond this primary form of division of labor between
reproductive and worker castes, there most often exists
a further division of labor among workers, who tend to
perform specific tasks for some amount of time, rather
than to be generalists who perform various tasks all the
time. Workers are divided into age or morphological
subcastes. Age subcastes correspond to individuals of
the same age that tend to perform identical tasks: this
phenomenon is called temporal polyethism. In some
species, workers can have different morphologies:
workers that belong to different morphological castes
tend to perform different tasks. But even within an
age or morphological caste, there may be differences

4 Eusociality characterizes the highest level of sociality in the
animal kingdom; an animal group is said to be eusocial when the
following three traits are present: (i) a cooperation in caring for
the young, (ii) a reproductive division of labor with more or less
sterile individuals working on behalf of individuals engaged in
reproduction, and (iii) an overlap of generations.

among individuals in the frequency and sequence of
task performance: one may therefore speak of be-
havioral castes, to describe groups of individuals that
perform the same set of tasks in a given period.

One of the most striking aspects of division of labor
is plasticity, a property achieved through the workers’
behavioral flexibility: the ratios of workers perform-
ing the different tasks that maintain the colony’s vi-
ability and reproductive success can vary (i.e., work-
ers switch tasks) in response to internal perturbations
or external challenges. An important question is to
understand how this flexibility is implemented at the
level of individual workers, which do not possess any
global representation of the colony’s needs.

3.2. A simple model of task allocation in ant colonies

Bonabeau et al. [5] have developed a simple model
for task allocation in ants based on the notion of re-
sponse threshold [66,67]: individuals start to become
engaged in task performance when the level of the
task-associated stimuli, which plays the role of stig-
mergic variable, exceeds their threshold. Differences
in response thresholds may either reflect actual dif-
ferences in behavioral responses, or differences in the
way task-related stimuli are perceived. When special-
ized individuals performing a given task are withdrawn
(they have low response thresholds with respect to
stimuli related to this task), the associated task de-
mand increases and so does the intensity of the stim-
ulus, until it eventually reaches the higher character-
istic response thresholds of the remaining individuals
that are not initially specialized into that task; the in-
crease of stimulus intensity beyond threshold has the
effect of stimulating these individuals into performing
the task. This is exactly what was observed by Wilson
[90] in experiments where he artificially reduced the
minor/major (minor and major are two ant castes) ratio
to below 1 and observed a change in the rate of activ-
ity within 1 hour of the ratio change: for small ratios,
majors engage in tasks usually performed by minors
and efficiently replace the missing minors (the results
of one of these experiments are shown in Fig. 6).

What is a response threshold? Lets be the intensity
of a stimulus associated with a particular task:s can be
a number of encounters, a chemical concentration, or
any quantitative cue sensed by individuals. A response
thresholdθ , expressed in units of stimulus intensity,
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Fig. 6. Number of behavioral acts (social behavior and
self-grooming) per major per hour as a function of the fraction of
majors in the colony for the speciesPheidole megacephala. Fit-
ting lines are only visual aids. (From Wilson [90], Fig. 6, p. 94;
reprinted by permission of Springer-Verlag.)

is an internal variable that determines the tendency of
an individual to respond to the stimuluss and perform
the associated task. More precisely,θ is such that the
probability of response is low fors � θ and high for
s � θ . One family of response functionsTθ (s) that
can be parametrized with thresholds that satisfy this
requirement is given by

Tθ (s) = sn

sn + θn , (4)

wheren > 1 determines the steepness of the threshold.
In the rest of the section, we usen = 2, but similar
results can be obtained with other values ofn > 1.
The meaning ofθ is clear: fors � θ , the probability
of engaging in task performance is close to 0, and for
s � θ , this probability is close to 1; ats = θ , this
probability is exactly 1/2. Therefore, individuals with
a lower value ofθ are likely to respond to a lower
level of stimulus.

Assume that there are two castes and that only one
task needs to be performed. This task is associated with
a stimulus or demand, the level of which increases if
it is not satisfied (because the task is not performed by
enough individuals, or not performed with enough ef-
ficiency). LetSi be the state of an individuali (Si = 0
corresponds to inactivity,Si = 1 corresponds to per-
forming the task), andθi the response threshold ofi,
i = 1,2.

An inactive individual starts performing the task
with a probabilityP per unit time:

P(Si = 0→ Si = 1) = sn

sn + θni
. (5)

The probability that an individual will perform a
task depends ons, the magnitude of the task-associated
stimulus, that affects the probability of being exposed
to it, and on θi , the probability of responding to
task-related stimuli [67].

An active individual gives up task performance
and becomes inactive with probabilityp per time
unit (that we take identical for the two castes, i.e.,
p1 = p2 = p):

P(Si = 1→ Si = 0) = p, (6)

1/p is the average time spent by an individual in task
performance before giving up the task. It is assumed
thatp is fixed, and independent of the stimulus. Indi-
viduals give-up task performance after 1/p, but may
become engaged again immediately if the stimulus is
still large. Variations in stimulus intensity are due to
task performance, which reduces stimulus intensity,
and to the autonomous increase of demand, i.e., irre-
spective of whether or not the task is performed. The
resulting equation for the evolution of stimulus inten-
sity s is therefore (in discrete time)

s(t + 1) = s(t)+ δ − αnact, (7)

whereδ is the increase, supposed to be constant, in
stimulus intensity per unit time,nact the number of ac-
tive individuals, andα is a scale factor measuring the
decrease in stimulus intensity due to the activity of one
individual, i.e., the efficiency of individual task per-
formance. In Monte Carlo simulations [5], this simple
fixed threshold model shows remarkable agreement
with experimental results in the case where there are
two castes characterized by two different values of the
response threshold: when “minors”, with low response
thresholds, are removed from the simulated colony,
“majors”, with higher response thresholds, start to per-
form tasks usually performed by minors. Fig. 7 shows
the fraction of majors engaged in task performance
as a function of the fraction of majors in the colony.
This curve is very similar to the one observed by Wil-
son [89]. This simple model with one task can be eas-
ily extended to the case where there are two or more
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Fig. 7. Comparison between simulation results and real ants data.
On the left vertical axis: number of ants per majors during Monte
Carlo simulations as a function of the fractionf of majors in the
colony (parameters:θ1 = 8, θ2 = 1, α = 3, δ = 1, p = 0.2). On
the right vertical axis: Wilson’s [90] results (scaled so that curves
of model and experiments lie within the same range): number
of social behavior acts per major within time of experiments in
Pheidola guilelmimuelleriand Pheidole pubiventrisas a function
of the fractionf of majors in the colony (From [5], reprinted by
permission).

tasks to perform. In this case, each individual has a set
of thresholds, each threshold being associated to the
stimulus of a specific task or group of tasks.

The fixed threshold model described above has been
used to organize a group of robots by Krieger and Bil-
leter [44]. They designed a group of Khepera robots
(miniature mobile robots aimed at “desktop” experi-
ments [60]) to collectively perform a puck-foraging
task. In one of the experiments they performed, pucks
spread in the environment are taken back by the robots
to the “nest” where they are dropped in a basket. The
available “energy” of the group, which plays the role
of stigmergic variable, decreases regularly with time,
but increases when pucks are dropped into the basket.
More energy is consumed during foraging trips than
when robots are immobile in the nest. Each robot has
a foraging threshold: when the energy of the colony
goes below the foraging threshold of a robot, the robot
leaves the nest to look for pucks in the environment.
Krieger and Billeter’s experiment has shown the
viability of the threshold-based stigmergic approach
to self-organization in a rather simple environment.

Further experimentation is necessary to test the
methodology on more complex tasks.

3.3. Adaptive task allocation: the example of mail
retrieval

The simple response threshold model, which
assumes that each worker responds to a given stim-
ulus when stimulus intensity exceeds the worker’s
threshold, can explain how flexibility at the colony
level results from the workers’ behavioral flexibility
[5]. But it has several limitations, because it assumes
that workers’ thresholds are fixed over the studied
time-scale. In fact, it cannot account for the genesis
of task allocation for it assumes that individuals are
differentiated and roles preassigned, neither can it
account for robust task specialization within (phys-
ical or temporal) castes. Finally, as a model of real
ants behavior it is valid only over sufficiently short
time-scales, where thresholds can be considered con-
stant.

In order to overcome these limitations, Theraulaz et
al. [81,83] have extended the fixed threshold model by
allowing thresholds to vary in time, following a simple
reinforcement process: a threshold decreases when the
corresponding task is performed, and increases when
the corresponding task is not performed. This idea had
been previously introduced by Oster [62], Deneubourg
et al. [19], and Plowright and Plowright [64], who
did not attempt to explore its consequences in detail,
especially when several tasks need to be performed.
It is this model with threshold reinforcement that has
been applied by Bonabeau et al. [4] to a problem of
adaptive mail retrieval.

Imagine that a group of mailmen belonging to an
express mail company have to pick-up letters in a city.
Customers should not have to wait more than a given
amount of time: the aim of the mail company is there-
fore to allocate the mailmen to the various demands
that appear in the course of the day so as to keep the
global demand as low as possible. The probability that
mailman i, located in zonezi , respond to a demand
intensitysj in zonej is given by

pij =
s2
j

s2
j + αθ2

ij + βd2
zij

, (8)
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Fig. 8. Adaptive task allocation: simulation results. (a) Demand as a function of time (one iteration at each time step): one mailman is
removed at timet = 2000. (b) Threshold dynamics of a particular mailman with respect to the zone for which a specialist is removed at
time t = 2000. (From [4]; reprinted by permission World Scientific.)

where θij ∈ [θmin, θmax] is a response threshold of
mailman i to a demand from zonej , dzij the dis-
tance betweenzi and j (this distance can either be
Euclidean or include factors such as one-ways, lights,
traffic jams, etc.), andα and β are two parameters
that modulate the respective influences ofθ and d.
Each time a mailman allocates himself to zonej to re-
trieve mail, his response thresholds are updated in the
following way:

θij ← θij − ξ0, (9)

θil ← θil − ξ1, l ∈ nj , (10)

θik ← θik + φ for k 6= j and k /∈ nj , (11)

wherenj is the set of zones surroundingj , ξ0 andξ1
are two learning coefficients corresponding to the new
zone where that agent moved, andφ is the forgetting
coefficient applied to response thresholds associated
with other zones.

Simulations have been performed with a grid of
5×5 zones (we consider four neighbors for the update
of Eq. (11) with periodic boundary conditions) and
five mailmen; at every iteration, the demand increases
in five randomly selected zones by an amount of 50,
α = 0.5, β = 500,θmin = 0, θmax= 1000,ξ0 = 150,
ξ1 = 70, φ = 10. Mailmen are swept in random or-
der, and they decide to respond to the demand from
a particular zone according to Eq. (8). If no mailman
responds after five sweepings, the next iteration starts.
If a mailman responds, this mailman will be unavail-
able for an amount of time that we take to be equal

to the distance separating his current location from
the zone where the demand comes from. Once the
mailman decides to allocate himself to that zone, the
associated demand in that zone is maintained at zero
(since any demand emerging between the time of the
mailman’s response and his arrival in the zone will
be satisfied by the same mailman). Fig. 8a shows how
the demand increases but is still kept under control
when one mailman fails to perform his task. Fig. 8b
shows how the threshold of a mailman with respect
to a single zone can vary as a function of time. A
special behavior can be observed after the removal of
a mailman specialist of a given zone: another mail-
man lowers his threshold with respect to that zone
and becomes in turn a new specialist of that zone.
This is what is observed in Fig. 8b. However, because
the workload may be too high to allow mailmen to
settle into a given specialization, response thresholds
may oscillate in time. All these features point to the
flexibility and robustness of this algorithm.

Although we have presented the performance of
the algorithm on one specific example, it can cer-
tainly be modified to apply to virtually any kind of
task allocation problem: the demandsj can be the
abstract demand associated to some taskj , θij is
a response threshold of actori with respect to the
task-associated stimulussj . Finally,dzij is an abstract
distance betweeni and taskj which can, e.g., rep-
resent the ability or lack of ability ofi to deal with
taskj : if i is not the most efficient actor to perform
task j , it will not respond preferentially tosj , but
if no other actor is in a position to respond, it will
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eventually perform the task. It is certainly possible to
design a scheme in whichd can vary depending on
the efficiency ofi in performing taskj .

4. Cemetery formation and exploratory data
analysis

4.1. Cemetery organization

Chrétien [11] has performed intensive experiments
on the antLasius nigerto study the organization of
cemeteries. Other experiments on the antPheidole
pallidula are also reported in [18], and it is now known
that many species actually organize a cemetery. The
phenomenon that is observed in these experiments is
the aggregation of dead bodies by workers. If dead
bodies, or more precisely items belonging to dead
bodies, are randomly distributed in space at the begin-
ning of the experiment, the workers will form clusters
within a few hours (see Fig. 9). If the experimental
arena is not sufficiently large, or if it contains spatial
heterogeneities, the clusters will be formed along
the borders of the arena or more generally along the
heterogeneities. The basic mechanism underlying this
type of aggregation phenomenon is an attraction be-
tween dead items mediated by the ant workers: small
clusters of items grow by attracting workers to deposit
more items. It is this positive feedback that leads to

Fig. 9. Real ants clustering behavior. The figures show four suc-
cessive pictures of the circular arena. From left to right and from
up to down: the initial state, after 3, 6 and 36 h, respectively.

the formation of larger and larger clusters. In this case
it is therefore the distribution of the clusters in the
environment that plays the role of stigmergic variable.

Deneubourg et al. [18] have proposed a model rely-
ing on biologically plausible assumptions to account
for the above-mentioned phenomenon of dead body
clustering in ants. The model, called in the follow-
ing basic model(BM), relies on the general idea that
isolated items should be picked-up and dropped at
some other location where more items of that type are
present. Let us assume that there is only one type of
item in the environment. The probability for a ran-
domly moving ant that is currently not carrying an
item to pick-up an item is given by

pp =
(

k1

k1+ f
)2

, (12)

wheref is the perceived fraction of items in the neigh-
borhood of the ant andk1 is the threshold constant:
for f � k1, pp is close to 1 (i.e., the probability of
picking-up an item is high when there are not many
items in the neighborhood), andpp is close to 0 if
f � k1 (i.e., items are unlikely to be removed from
dense clusters). The probabilitypd for a randomly
moving loaded ant to deposit an item is given by

pd =
(

f

k2+ f
)2

, (13)

wherek2 is another threshold constant: forf � k2,
pd is close to 0, whereas forf � k2, pd is close to 1.
As expected, the pick-up and deposit behaviors obey
roughly opposite rules. The question is now to define
how f is evaluated. Deneubourg et al. [18], having
in mind a robotic implementation, moved away from
biological plausibility and assumed thatf is computed
using a short-term memory that each ant possesses: an
ant keeps track of the lastT time units, andf is simply
the numberN of items encountered during these last
T time units divided by the largest possible number
of items that can be encountered duringT time units.
If one assumes that only zero or one object can be
found within a time unit, thenf = N/T . Fig. 10
shows a simulation of this model: small evenly spaced
clusters emerge within a relatively short time and then
merge into fewer larger clusters. BM can be easily
extended to the case in which there are more than one
type of items. Consider, e.g., the case with two types
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Fig. 10. Computer simulation of the clustering model. The fig-
ures show four successive pictures of the simulated circular arena
(diameter=200 grid sites; total area=31 416 sites). From left to
right and from up to down: the initial state, with 5000 items placed
randomly in the arena, the arena att = 50 000, t = 1 000 000 and
t = 5 000 000. Parameters:T = 50, k1 = 0.1, k2 = 0.3, 10 ants.
Modified from [2].

a andb of items in the environment. The principle is
the same as before, but nowf is replaced byfa and
fb, the respective fractions of items of typesa andb
encountered during the lastT time units. Fig. 11 shows
a simulation of this sorting model with two items.

4.2. Exploratory data analysis

Lumer and Faieta [51] have generalized Deneubourg
et al.’s BM [18] to apply it to exploratory data anal-
ysis. The idea here is to define a “dissimilarity”d
(or distance) between objects in the space of object
attributes: for instance, in BM, two objectsoi and
oj can only be either similar or different, so that a
binary metric can be defined, whered(oi, oj ) = 0,
if oi andoj are identical objects, andd(oi, oj ) = 1,
otherwise. Obviously, the very same idea can be
extended to include more complicated objects, i.e.,
objects with more attributes, and/or more complicated
distances. It is classical in data analysis to have to
deal with objects that can be described by a finite
numbern of real-valued attributes, so that objects can

Fig. 11. Simulation of the sorting model. (a) Initial spatial dis-
tribution of 400 items of two types, denoted by◦ and+, on a
100× 100 grid; (b) spatial distribution of items att = 500 000;
and (c) att = 5 000 000. Parameters:T = 50, k1 = 0.1, k2 = 0.3,
10 ants. (From [2]; reprinted by permission of Oxford University
Press.)
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be seen as points inRn andd(oi, oj ) is the Euclidean
norm (or any other usual metric, such as‖ . . . ‖∞).
The algorithm introduced by Lumer and Faieta [51]
(hereafter LF) consists in projecting the space of at-
tributes onto some lower dimensional space, so as
to make clusters appear with the following property:
intra-cluster distances (i.e, attribute distances between
objects within clusters) should be small with respect
to inter-cluster distances (i.e., attribute distances be-
tween objects that belong to different clusters). Such a
mapping should therefore keep some of the neighbor-
hood relationships present in the higher-dimensional
space (which is relatively easy since, for instance, any
continuous mapping can do the job) without creating
too many new neighbors inm dimensions,m < n,
that would be false neighbors inn dimensions (which
is much less trivial since projections tend to compress
information and may map several well-separated
points in then-dimensional space onto one single
point in them-dimensional subspace).

The LF algorithm works as follows. Let us assume
thatm = 2; instead of embedding the set of objects
into R2, the LF algorithm approximates this embed-
ding by considering a grid, i.e., a subspace ofZ2.
Ants can directly perceive a surrounding region of area
s2 − 1 (a square Neighs×s of s × s sites surrounding
siter). Obviously, direct perception allows a more ef-
ficient evaluation of the state of the neighborhood than
the memory-based procedure used in the BM: while
the BM was aimed to a robotic implementation, the
LF algorithm is to be implemented in a computer with
many less practical constraints. Letd(oi, oj ) be the
distance between two objectsoi andoj in the space
of attributes. Let us also assume that an ant is located
at siter at time t , and finds an objectoi at that site.
The local density of objects similar to typeoi at site
r is given by

f (oi)=max


0,

1

s2

∑
oj∈Neighs×s (r)

[
1− d(oi, oj )

α

]
 ,
(14)

f (oi) is a measure of the average similarity of object
oi with the other objectsoj present in its neighbor-
hood: this expression replaces the fractionf of similar
objects of the BM. The parameterα defines the scale
for dissimilarity: its value is important for it deter-

mines when two items should or should not be located
next to each other. For example, ifα is too large, there
is no enough discrimination between different items,
leading to the formation of clusters composed of items
which should not belong to the same cluster. If, on the
other hand,α is too small, distances between items in
attribute space are amplified to the point where items
which are relatively close in attribute space cannot be
clustered together because discrimination is too high.
Lumer and Faieta [51] define picking-up and dropping
probabilities as follows:

pp(oi) =
(

k1

k1+ f (oi)
)2

,

pd(oi) =
{

2f (oi) if f (oi) < k2,

1 if f (oi) ≥ k2,
(15)

where k1 and k2 are two constants that play a role
similar tok1 andk2 in the BM.

As an illustration, Lumer and Faieta [51] have used
a simple example where the attribute space isR2, and
the values of the two attributes for each object corre-
spond to its coordinates(x, y) in R2. Four clusters of
200 points each are generated in attribute space, with
x andy distributed according to normal (or Gaussian)
distributions (see Fig. 12a for the scatter of points in
attribute space). The data points were then assigned
random locations on a 100×100 grid, and the cluster-
ing algorithm was run with 10 ants. Fig. 12b–d shows
the system att = 0, t = 500 000 andt = 1 000 000
(at each iteration, indexed by the countert , all ants
have made a random move and possibly performed an
action). Objects that are clustered together belong to
the same initial distribution, and objects that do not
belong to the same initial distribution are found in dif-
ferent clusters.

Because there are generally more clusters in the pro-
jected system than in the initial distribution, Lumer
and Faieta [51] have added three features to their
systems that help to solve this problem:
• Ants with different moving speeds. Let the speedv

of an ant be distributed uniformly in [1, vmax] (v is
the number of grid units walked per time unit by
an ant along a given grid axis; the simulations use
vmax= 6). The speedv influences the tendency of
an ant to either pick-up or drop an object through
the functionf (oi):
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Fig. 12. Simulation of the clustering algorithm with 10 ants. (a) Distribution of points in “attribute space” — 4 clusters of
200 points each are generated in attribute space, withx and y distributed according to normal (or Gaussian) distributions
N(µ, σ): [x ∝ N(0.2,0.1), y ∝ N(0.2,0.1)], [x ∝ N(0.8,0.1), y ∝ N(0.2,0.1)], [x ∝ N(0.8,0.1), y ∝ N(0.8,0.1)], and
[x ∝ N(0.2,0.1), y ∝ N(0.8,0.1)], for clusters 1, 2, 3 and 4, respectively; (b) initial spatial distribution of the 800 items on a 100×100 grid
(grid coordinates are scaled in the unit square); (c) distribution of the items att = 500 000; and (d) distribution of the items att = 1 000 000.
Items that belong to different clusters are represented by different symbols:◦,+, ∗,×. Parameters:k1 = 0.1, k2 = 0.15, α = 0.5, s2 = 9.
(From [2]; reprinted by permission of Oxford University Press.)

f (oi)=max


0,

1

s2

∑
oj∈Neighs×s (r)

1− d(oi, oj )

α(1+ ((v − 1)/vmax))





 . (16)

Fast moving ants are not as selective as slow ants
in their estimation of the average similarity of an
object to its neighbors. The diversity of ants allows
to form the clusters over various scales simultane-
ously: fast ants form coarse clusters on large scales,
i.e., drop items approximately in the right coarse-

grained region, while slow ants take over at smaller
scales by placing objects with more accuracy.
• A short-term memory. Ants can remember the lastm

items they have dropped along with their locations.
Each time an item is picked up, the ant compares the
properties of the item with those of them memo-
rized items and goes toward the location of the most
similar item instead of moving randomly. This be-
havior leads to a reduction in the number of statisti-
cally equivalent clusters, since similar items have a
lower probability of initiating independent clusters.
• Behavioral switches. Ants can start to destroy clus-

ters if they have not performed any pick up or



M. Dorigo et al. / Future Generation Computer Systems 16 (2000) 851–871 867

deposit actions for a given number of time steps.
This procedure allows to “heat-up” the system to
escape local non-optimal configurations.
Fig. 13, which should be compared with Fig. 12d,

shows the system att = 1 000 000 in the case of
ants with different speeds and short term memory. The
effects of behavioral switches, not included here, can
be found in [51].

Lumer and Faieta [51] suggest that their algorithm
is halfway between a cluster analysis — insofar as el-
ements belonging to different concentration areas in
their n-dimensional space end up in different clusters
— and a multi-dimensional scaling, in which an intra-
cluster structure is constructed. Note that in the present
example, the exact locations of the various clusters on
the two-dimensional space are arbitrary, whereas they
usually have a meaning in classical factorial analy-
sis. In a lot of cases, information about the locations
of the clusters is not necessary or useful (especially
in the context of textual databases), and relaxing the
global positioning constraints allows to speed-up the
clustering process significantly.

Finally, we mention that the LF algorithm has been
successfully extended by Kuntz et al. [45–47] so that
it can be applied to a variety of graph drawing and
graph partitioning problems. In this case the objects
moved around by the artificial ants are projections on

Fig. 13. Extended clustering algorithm att = 1 000 000. There
are 10 ants and 800 items on a 100× 100 grid (grid coordinates
are scaled in the unit square). Items that belong to different clus-
ters are represented by different symbols:◦,+, ∗,×. Parameters:
k1 = 0.1, k2 = 0.15, α = 0.5, s2 = 9,m = 8, vmax = 6. (From
[2]; reprinted by permission; © Oxford University Press.)

a spaceRn of the vertices of the graph, and the ants
goal is to find configurations of these objects that ei-
ther minimize some objective function (in the graph
partitioning applications) or please the observer’s eye
(in the graph drawing applications).

5. Conclusions

In this paper we informally defined anant al-
gorithm to be a multi-agent system inspired by the
observation of some real ant colony behavior exploit-
ing the stigmergic communication paradigm. In ant
algorithms stigmergic communication is implemented
by means of a stigmergic variable which takes dif-
ferent forms in the different applications: artificial
pheromone trail in shortest path problems, level of
nest energy in puck-foraging, level of customer de-
mand in the mailmen example, puck distribution in
robotic clustering, and the distribution of objects in
the lower-dimensional space in exploratory data anal-
ysis. Ant algorithms exhibit a number of interesting
properties like flexibility (a colony responds to inter-
nal perturbations and external challenges), robustness
(tasks are completed even if some individuals fail),
decentralization (there exists no central control) and
self-organization (solutions to problems faced by a
colony are emergent rather than predefined), which
make them well suited for the solution of problems
that are distributed in nature, dynamically changing,
and require built-in fault-tolerance.

Notwithstanding the number of interesting applica-
tions presented, a number of open problems need to
be addressed and solved before that of ant algorithms
becomes a mature field. For example, it would be in-
teresting to give an answer to the following questions:
How can we define “methodologies” to program ant
algorithms? How do we define “artificial ants”? How
complex should they be? Should they all be identical?
What basic capabilities should they be given? Should
they be able to learn? Should they be purely reactive?
How local should their environment knowledge be?
Should they be able to communicate directly? If yes,
what type of information should they communicate?

What is also missing, similarly to what happens
with many other adaptive systems, is a theory that al-
lows to predict the system behavior as a function of
its parameters and of the characteristics of the appli-
cation domain. On this aspect, let us mention a couple
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of recent and intriguing results: Gutjahr has recently
proved (see this special issue [40]) convergence to the
optimal solution for a particular version of AS, while
Wagner et al. (see this special issue [86]) have proved
an upper bound to the time necessary to an ant-like
agent to cover static and dynamic graphs.
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