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Abstract

Evolutionary algorithms are an important emergent computing method-
ology. They have aroused intense interest in the past few years because
of their versatility in solving difficult problems in the optimization and
machine learning fields. Many applications to several different areas
have been reported and the field is still in expansion. We will first
briefly review the history and the methodological basis of evolutionary
algorithms, followed by a simple example of their functioning. Parallel
evolutionary algorithms will then be introduced, showing their good
match to today’s parallel and distributed computers. We will then
look at a couple of applications and, finally, references and comments
to bibliographic and other information on evolutionary methods will
be given to allow readers to broaden their knowledge in the field.

1 Introduction

Evolutionary Algorithms (EAs) are a hot topic these days. Although they
are probably a fashionable theme, there is also much solid work being done
and the steady adoption of evolutionary computing methodologies not only
in research but also for industrial and commercial problem-solving activities
is a sure sign that the approach is sound and competitive. EAs are here to
stay then and we will try to find out how they work and why they offer good

solutions for difficult problems.



Evolutionary Algorithms are search and optimization procedures that
find their origin and inspiration in the biological world. The Darwinian
theory of evolution, with the survival of the fittest in a changing environment
seems to be generally accepted, at least on grounds of accumulated evidence
so far on the earth. EAs try to abstract and mimic some of the traits of the
ongoing struggle for evolution in order to do a better job in problems that
require adaptation, search and optimization. However, it would be wrong
to blindly identify simulated evolution with actual biological evolution. It
is much better to consider ideas from the theory of evolution as being an
inspiration for finding good artificial adaptive processes. After all, evolution
took millions of years, is an ongoing process and operates in an exceedingly
complex system of interactions. Evolution-inspired methodologies can and
should only capture major distinctive features of natural evolution. Since
we are in fact dealing with man-made systems, we should also feel free of
using whatever device works well for a given class of problems, even if it has
no direct biological counterpart, provided that some theoretical basis can be
found for its use. Furthermore, artificial evolution runs at electronic speeds
and is amenable to mathematical and statistical analysis.

The first part of this chapter will be devoted to a survey of the origins,
motivations and developments in the field of simulated evolution. Fvolu-
tionary Algorithms is a general term effectively encompassing a number of
related but not identical methodologies that all exploit ideas from natu-
ral evolution and selection. Genetic Algorithms, FEvolution Strategies and
Evolutionary Programming are the prominent approaches with Genetic Pro-
gramming rapidly coming into play. Reasons of space will prevent us from
describing all the models and their relationships. In the second part we
will therefore concentrate on the widely used Genetic Algorithms (GAs),
introducing them through an easy example. To put the whole subject into
perspective, pointers will be given to reference work in the other evolution-
ary methods and to the interrelations between them. The term FEvolutionary
Algorithm will still be used in this review in general settings or whenever it
does not lend itself to misunderstanding. The term Genetic Algorithms will
be preferred for the more technical discussions.

Evolutionary computing offers many possibilities for parallel and dis-



tributed execution because many steps are independent. In fact, if the nat-
ural metaphor is to be followed, evolutionary algorithms are parallel in the
first place, since evolution takes place with individuals acting simultaneously
in spatially extended domains. A sequential execution setting thus appears
as an unnecessary constraint. Section 7?7 gives an extensive discussion of
parallelism in EAs.

The number of published papers on evolutionary computation has dra-
matically increased over the last few years. Evolutionary algorithms have
been applied to many problems in diverse research and application areas
such as hard function and combinatorial optimization, neural nets evolution,
planning and scheduling, industrial design, management and economics, ma-
chine learning and pattern recognition. It is not my aim here to give a full
account of current applications of EAs. A few representative applications
will be briefly described but I shall provide a number of pointers to the
relevant literature.

Because of the explosive growth of the field, there is a risk for the new-
comer to get lost in the multi-faceted world of evolutionary computing. For
this reason a commented bibliography is given. Although far from exhaus-
tive, this list should prove useful for beginners. On the other hand, groups
working in evolutionary computing are very enthusiastic and willing to share
their results and ideas. This has given rise to mailing lists, public domain
software and discussion forums. To make the life of the interested reader
easier, I will provide information about how to access this sources.

Let us now turn to the fascinating history of evolutionary computing.

2 The Genesis of Genetic Algorithms

Work on what is nowadays called evolutionary computing started in the
sixties both in the United States and in Europe. John Holland and his asso-
ciates at the University of Michigan were interested in artificial complex sys-
tems that would be able to adapt under changing environmental conditions.
The idea was that, in order for a population of individuals to collectively
adapt in some environment, it should behave like a natural system where

survival is promoted by the elimination of useless or harmful traits and



by rewarding useful behaviour. Holland’s insight was his abstraction into
the genetic algorithm of the fundamental biological mechanisms permitting
system adaptation into a form that can be expressed mathematically and
simulated on a computer for a wide range of problems.

The link between an actual search and optimization problem and the
GA is the individual. Each individual represents a feasible solution in some
problem space through a suitable mapping. The mapping from problem
space to individuals and the reverse mapping have historically been done
through strings of binary digits. Introduced by Holland, bit strings are
general and they allow some theoretical results about GAs to be obtained.
However, bit encoding is not always the best choice and we will see in 77
that other representations are possible and have been used.

A GA is an iterative procedure which maintains a constant population
size and works as follows. An initial population of a few tens to a few
hundreds individuals is generated at random or heuristically. During each
iteration step, called a generation, the individuals in the current population
are evaluated and given a fitness value. To form a new population, indi-
viduals are selected with a probability proportional to their relative fitness.
This ensures that the expected number of times an individual is chosen is
approximately proportional to its relative performance in the population, so
that good individuals have more chances of being reproduced. This selection
procedure alone cannot generate any new point in the search space. GAs
traditionally use two genetic operators: crossover and mutation for generat-
ing new individuals i.e, new search points. Crossover is the most important
recombination operator: it takes two individuals called parents and produces
two new individuals called the offspring by swapping parts of the parents.
In its simplest form the operator works by exchanging substrings after a
randomly selected crossover point. Through crossover the search is biased
towards promising regions of the search space. The second operator, muta-
tion, is essentially background noise that is introduced to prevent premature
convergence to local optima by randomly sampling new points in the search
space. To bit strings, mutation is applied by flipping bits at random in a
string with a certain probability called the mutation rate.

GAs are stochastic iterative algorithms without converge guarantee. Ter-



mination may be triggered by reaching a maximum number of generations
or by finding an acceptable solution.

The following general schema summarizes a standard genetic algorithm:

produce an initial population of individuals

while termination condition not met do
evaluate the fitness of all individuals
select fitter individuals for reproduction
produce new individuals

generate a new population by inserting some new good

individuals and by discarding some old bad individuals
mutate some individuals

end while

In the next section a tutorial example of a simple problem solved with a
plain GA will be presented and discussed in detail. A classic source for an
in-depth discussion of GAs, including the historical aspects, is Goldberg’s
book [1].

Let us now move for a moment to the other side of the Atlantic. While
Holland was inventing GAs in the States, similar concepts were making
their appearance in Germany. Ingo Rechenberg and H.-P. Schwefel wished
to imitate the principles of natural evolution to achieve robust algorithms
for parameter optimization problems. This approach goes under the name
of Evolution Strategies (ESs). In its original form evolution strategies work
with continuosly changing parameters represented as floating point num-
bers, rely on mutation as the only genetic operator and the population just
had two members, the parent and the offspring. Later a multimembered
population was used. Here is an outline of a typical implementation for a
numerical optimization problem, where a coordinate vector corresponding

to the optimum of a function is sought:



e An initial population of parent vectors x;, ¢ = 1,..., N is selected at

random from a uniform distribution.

e An offspring vector is obtained from each parent by adding a normally

distributed random number to each vector component.

e The selection operator determines which of the vectors are to be kept
for the next generation by choosing the n vectors with the best fitness

among parents and offspring.

e The process of generating new vectors and evaluating the whole pop-

ulation continues until a satisfactory solution is found.

The above description is a simplified one. A more detailed discussion with
references to the original work is to be found in Michalewicz’s book [2] and
in [10].

Evolutionary Programming is somewhat similar in spirit to evolution
strategies in that it also uses mutation as the main genetic operator. This
avenue of investigation originated in the United States in the sixties and rep-
resents problem solutions by a population of finite-state machines. Offspring
machines are created by randomly mutating in various ways each parent ma-
chine. Parent and offspring are assigned a payoff and the best machines are
retained to form the new population while the worst individuals die in order
to maintain a constant size population.

The distinctive trait of evolution strategies and evolutionary program-
ming with respect to genetic algorithms is that in the latter the simulated
evolution takes place at the genotypic level, that is at the level of coding
sequences, whereas the former put the emphasis on phenotipic adaptation
i.e., the behavioural expression of a genotype in a specific environment.

With time, Evolution Strategies and Genetic Algorithms have converged
somewhat with ESs introducing a form of recombination of individuals and
GAs adopting the idea of floating-point coding of chromosomes for numerical
work and the self-adaptation of mutation rates characteristic of ESs.

A recent account of evolutionary programming along with a comparison

with genetic algorithms and evolution strategies can be found in [3].



3 A Simple Example

Summarizing what has been said in the previous section, we see that the

essential ingredients of a genetic algorithm are the following;:

a constant size population of individuals, usually randomly initialized.

each individual represents a point in the search space for a given prob-

lem through a suitable coding.
a fitness value is assigned to each individual in the population.

individuals are ranked and selected according to their fitness in such

a way that more fit individuals are more likely to reproduce.

genetic operators such as crossover and mutation are applied to pairs of
individuals or to single individuals in order to produce new individuals

i.e., new feasible solutions to a problem.

In order to explain how GAs work, I will present a simple example. GAs

have been largely used in optimization and, although they are not limited to

that field, their workings are probably better understood in an optimization

setting. The problem is not a mathematically hard one, it could be solved

by hand or with a number of other established methods and its value is

purely illustrative.

The non-constrained function minimization problem can be cast as fol-

lows.

Given a function f(z) and a set D € R™, find z* such that:

f(z*) = min{f(z) | Vz € D}

where z = (x1,23,...,2,)’. For maximization, simply replace f with —f.

Let us consider the following function (see Fig.1):

f(z) = —[asin(y/[ z]) |

The problem is to find z* in the interval [0,512] which minimizes f.

Since f(x) is symmetric, studying it in the positive portion of the x axis will

suffice.
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Figure 1: Graph of f(z) in [-512,512].

Let us examine in turn the components of the genetic algorithm for
solving the given problem.

The initial population will be formed by 50 randomly chosen trial points
in the interval [0,512]. Therefore, one individual is a value of the real variable
z.

A binary string will be used to represent the values of x. The length of
the string will be a function of the required precision, the longer the string
the better the precision. For example, if each point z is represented in 10 bits
then 1024 different values are available for covering the interval [0, 512] with
1024 points, which gives a granularity of 0.5 for x i.e., the genetic algorithm
will be able to sample points no less than 0.5 apart from each other.

The strings (0000000000) and (1111111111) will represent respectively
the lower and upper bounds of the search interval. Any other 10-bit string
will be mapped to an interior point. For mapping the binary string to a real
number the string is first converted to a decimal number and then to the

corresponding real z. Finally note that we used 10-bit strings for the sake



of illustration: in real applications finer granularities and therefore longer
strings are often needed.

The fitness of each sample point x is simply the value of the function at
that point. Since we want to minimize f, the lower the value of f(z), the
fitter is x. 1

How are strings selected for reproduction as a function of their fitness?
There are several possibilities but here we will explain fitness-proportionate
selection, one of the simplest. Alternatives to this well-known method will
be briefly presented later. After having found the fitness of each individual

fi in a given generation, one first forms the sum:

popsize

S= > fi
=1

which is the total population fitness. Then a probability is assigned to

each string as follows:

o
S
Finally, a cumulative probability is obtained for each individual by adding

up the fitnesses of the preceding population members:
i
c; = Zpk, t=1,2,...,popsize
k=1

A random number r uniformly distributed in [0,1] is drawn popsize
times and each time the i-th string is selected such that ¢;_1 < r < ¢;.
When r < ¢, the first string is selected. This process can be visual-
ized as the spinning of a biased roulette wheel divided into popsize slots,
each with a size proportional to the individual’s fitness. For the sake of
illustration, suppose that there are only four strings with the following
p; values: p; = 0.30,p2 = 0.20,p3 = 0.40,p4 = 0.10. Thus we have:
c1 = 0.30,c = 0.50,c3 = 0.90,¢4 = 1.0. Now, imagine that a random

"We added a positive constant to our function definition to make it > 0 in the given
interval. This is required by some individual selection methods but has no influence on
the general argument.



number r = 0.25 is drawn. Since r < ¢1, individual 1 will be selected. If r
were 0.96 then individual 4 would be selected (c3 < 0.96 < ¢4).

With roulette-wheel selection fittest members have proportionally more
chances of being reproduced and strings can be selected more than once.
For this method to work, the fitness values should be positive numbers since
we are using probability measures.

Once the new population has been produced, strings are paired at ran-
dom and recombined through crossover. Here we will explain one-point
crossover. Assume that the following two strings have been selected for

recombination:

0010011010 and 1110010001

a position is selected at random between 1 and the length of the string
minus one, each position being equally likely. Suppose that position 6 has

been chosen (marked by the vertical bar):

001001 | 1010

111001 | 0001

Then, after swapping all bits from position 6 to the end of the string one

obtains two new strings called the offspring:

001001 | 0001

111001 | 1010

These two new individuals will enter the new population in place of their
parents. Crossover is applied with a certain frequency called crossover rate
D¢, which means that any given individual takes part in the recombination
if a uniformly distributed random variable in the interval [0, 1] has a value
< pe- A common empirical value for p, is 0.6.

After crossover, mutation can be applied to population members with

a frequency p,, around 0.01. The usual interpretation of bit mutation rate



is the following: for each string in the population and for each bit within
the string generate a random number r between 0 and 1, if r < p,, flip the
bit. These values of p, and p,, have been arrived at by repeated experimen-
tation and trial and error and have nothing sacred in themselves. In more
sophisticated GAs crossover and especially mutation rates do not need to
stay constant during a run.

What is the role of these genetic operators? There is an abundant liter-
ature about different variants of crossover and mutation and their relative
importance. In the classical GA view crossover is the fundamental operator
and mutation only plays an ancillary role. In this view, the importance of
crossover comes from the fact that it is believed to combine beneficial traits
of both parents, thereby increasing the likelihood of generating fitter indi-
viduals, whereas mutation can only affect one individual at a time. This has
to do with the apparent usefulness of sexual reproduction in nature and its
general diffusion, in spite of the fact that it requires finding a mate and can
make individuals more vulnerable to predators during the search. In a more
symbolical vein, the usefulness of crossover seems to be related to the combi-
nation of so-called building blocks i.e. better than average substrings coming
from different individuals (see the next section). Trough crossover we thus
try combinations of strings that have already been proved to be relatively
good. Mutation is still needed because even if selection and crossover to-
gether search new solutions, they tend to cause rapid convergence and there
is the danger of loosing potentially useful genetic material. We shouldn’t for-
get that we are in fact restricted to relatively small sample sizes in practice,
whence the possibility of sampling errors. In order to reintroduce diver-
sity and to avoid search stagnation, bit mutations are allowed as described
above. However, mutation frequencies have to be low, otherwise the search
tends to degenerate into a random walk.

The relative importance of mutation and crossover is still controversial
and some evolutionary techniques such as evolution strategies and evolu-
tionary programming have selection and more sophisticated versions of mu-
tation, and not crossover, as their principal evolutionary operators (see for
instance refs.[10] and [11]).



Equipped with these notions, let us now come back to our function min-
imization problem and run the GA. 2

As measures of the quality of the search we use here the average pop-
ulation fitness during a generation and the best individual found. Since
generation 0 is randomly initialized, it is to be expected that neither the
average nor the best fitnesses are very good. In fact, in a particular run we

found the following evolution:

Generation | Best Average
0 1.0430 | 268.70
3 1.0430 78.61
9 0.00179 | 32.71
18 0.00179 | 14.32
26 0.00179 5.83
36 0.00179 2.72
50 0.00179 1.77
69 0.00179 0.15

From the table, one sees that, starting from a random population, there is
a fairly rapid improvement in the first generations. The minimum is already
found at generation 9. However, the population average fitness continues
to improve until the population becomes little differentiated and the fitness
levels-off. This is a quite general behaviour of all evolutionary algorithms.
In this simple problem there is practically no risk for the algorithm to get
trapped in a local minimum. In harder problems, a compromise must be
reached between exploitation of good regions, i.e. local improvement, and
further exploration of the problem space, to avoid missing better extrema
as far as possible.

At the end of the run (generation 70), the five best solutions found where
those shown in the following table (where the Generation column says at

which generation a given solution has been found).

2All the runs described in this section have been done with the GENESIS program
[12]. The tables shown have been edited to improve readability.



x f(z) | Generation

421.5 | 0.04832 8
422.0 | 0.15785 6
421.0 | 0.00179 9
420.5 | 0.01824 8
420.0 | 0.09763 12

All points are clustered around the absolute minimum (z = 421.0, f(z) =
0.001794) which has thus been found within the given resolution limits. One
last remark is in order. Genetic algorithms are stochastic, thus their perfor-
mance varies from run to run (unless the same random number generator
with the same seed is used). Because of this, the average performance over
several runs is a more useful indicator of their behaviour than a single run.

This was an easy problem to solve for GAs as well as for any other
method. However, GAs have been shown to be effective for hard mathemat-

ical optimization of multimodal functions with tens of variables [9].

4 Why GAs work: Schemata and Building Blocks

In this section we will look in a little greater detail into the standard genetic
algorithm workings in order to see why GAs constitute an effective search
procedure. Remaining in the realm of binary string representation of indi-
viduals, let us consider the symbol alphabet {0,1,#} where {#} is a special
wild card symbol that matches both 0 and 1. A schema is a string with fixed
and variable symbols. For example, the schema [01#1#] is a template that
matches the following strings: [01010], [01011], [01110] and [01111]. The
symbol # is never actually manipulated by the GA: it is only a notational
device that makes it easier to talk about families of strings.

Holland’s idea was that every evaluated string actually gives partial in-
formation about the fitness of the set of possibles schematas of which the
string is a member. This is a manifestation of what he called implicit par-
allelism, not to be confused with the kind of parallelism to be discussed in

section ??. Then he analyzed the influence of reproduction, crossover and



mutation on the expected number of schemata when going from one genera-
tion to the next. The details of the analysis are relatively simple but cannot
be reported here. A good discussion can be found in ref. [1]. We will only
outline the main results and their significance.

Under fitness-proportionate replication, the number m of individuals in
the population belonging to a particular schemata H at time ¢+ 1 is related

to the same number at time ¢ by:

m(H,t+1) = m(H,t)(fu(t)/(f(t))
where fp(t) is the average fitness value of the strings representing schema
H, while f(t) is the average fitness value over all strings in the population.
If one assumes that a particular schema remains above the average by a
fixed amount cf(t) for a number ¢ of generations then the solution of the

above recurrence is the following exponential growth equation:
m(H,t) = m(H,0)(1+ c)'

Where m(H,0) stands for the number of schemata H in the population at
time 0, ¢ is a positive constant and ¢ > 0. The significance of this result
is that fitness-proportionate reproduction allocates exponentially increasing
number of trials to above-average schemata.

Now crossover and mutation enter into the picture. The effect of crossover,
which breaks strings apart, is to diminish the exponential increase by a quan-
tity that is proportional to the crossover rate p. and depends on the defining
length § of a schema and on the string length I:

perdl)

The defining length § of a given schema is the distance between the first
and the last fixed string positions. For example, for the schema [01#1#]
d =4 —1 =3 and for [##1#1010] 6 = 8 — 3 = 5. Intuitively, one sees
that short defining length schemata will be less disrupted by single-point
crossover. The result is that above-average schemata with short defining
lengths will still be sampled at an exponentially increasing rate. This above-
average, short defining length schemata are the so-called building blocks and

play an important role in the theory.



The effects of mutation are straightforward to describe. If the bit mu-
tation probability is p,,, then the probability of survival of a single bit is
1—pm. Since single bit mutations are independent, the total survival proba-
bility is thus (1 — p,, )}, where [ is the string length. But since we are talking
about schemata, only the fixed (i.e. non wild card) positions matter. This
number is called the order o(H) of a schema H and equals ! minus the
number of don’t care symbols. For example, the two schemata above have
o = 3 and o = 5 respectively. Then the probability of surviving a mutation

)O(H) which, for p,, < 1 can be approximated by

for a schema H is (1 — py,
1 — o(H)pm.
Putting together the effects of reproduction, crossover and mutation, we

are led to Holland’s so-called schema theorem:

m(H,t+1) > m(H, 20 SH) gy,

ft) I-1
This result essentially says that the number of short, low-order, above-
average schemata grows exponentially in subsequent generations of a genetic
algorithm.

Although the schema theorem is an important result, it was obtained
under somewhat idealized conditions. Both the individual representation
and the genetic operators can be different from those used by Holland. The
building-block hypothesis has been found reliable in many cases but it also
depends on representation and genetic operators and it is easy to find or
to construct problems for which it is not verified. These so-called deceptive
problems are being studied since a few years in order to find out what are
the inherent limitations of genetic algorithms and which representations and
operators, if any, can make them more easily tractable. In spite of the above
limitations, the theory sketched in this section represents a firm footing for
the workings of standard genetic algorithms. Refs. [1], [13] and [14] go into

much more detail.

5 More Advanced Topics and Extensions

In this section we hint at several extensions and variations that somewhat

complicate the rather neat image of a GA given earlier. This will bring us



closer to the way GAs are actually used by practitioners and will also partly
explain their generality and flexibility. We will look first at coding issues,
including non-binary and non-fixed-length representations. Then alterna-
tives to fitness-proportionate selection will be introduced in section ??. The
following section ?7 describes some different forms of the genetic operators,
especially crossover. Finally, we introduce hybrid algorithms, in which prob-
lem domain knowledge is brought into the GA in various ways making them
less general but often much more efficient. Although we will touch upon
the more important issues in the following sections, we cannot do justice to
the amount of research that has been done or is being done. However, the

interested reader will find references to more detailed presentations.

5.1 Representation

Binary coding has been the usual individual representation in genetic algo-
rithms for a long time. Binary strings are sufficiently general but they are
not always the more natural or the more adequate representation. Consider,
for instance, numerical parameter optimization problems such as the exam-
ple in section ?7?. There, the precision was a function of the number of bits
in the bit string representing an individual point. To attain a sufficient pre-
cision requires many bits and the problem is all the more serious if one wants
to tackle multidimensional problems. Dealing with very long bit strings is
time-consuming and the search spaces are enormous. Therefore, wouldn’t it
be better to consider the more natural floating point representation in these
cases? This has indeed been done with very good results ([2], [9]). Obvi-
ously, switching to floating point representation requires careful rethinking
of the genetic operators, which are going to be different from those used for

bit strings.

Representation issues also appear when dealing with combinatorial opti-
mization problems i.e., those discrete variable problems in which a particular
solution out of a finite set of feasible solutions is sought [15]. For example,
the shortest path problem on a directed graph is an easy combinatorial prob-

lem, meaning that it takes time proportional to a polynomial function of the



instance size to solve in the worst case. However there are many important
combinatorial optimization problems that are intrinsically hard i.e., their
time complexity is exponential. Typical representatives of this class are the
Traveling Salesman Problem (TSP) and the Hamilton Circuit problem. In
TSP we are to find the shortest tour that visits each node of a complete
weighted graph G exactly once. In the Hamilton circuit problem the ques-
tion is: given a graph G, is there a circuit in G visiting all nodes exactly
once?

There are no known efficient algorithms for hard combinatorial prob-
lems like the TSP and Hamilton circuit. Furthermore, these problems are
paradigmatic versions of very important management problems in the fields
of sequencing, routing and scheduling. Therefore, it is important to be able
to quickly find good solutions to large instances of these problems, even if
the solution is not globally optimal. Approximation and heuristic algorithms
of various kinds, including genetic algorithms, have been found effective.

When using GAs for this kind of problems, representation issues surface
again. For graphs, a natural representation of an individual is an integer
vector, where the integers represent some ordering of the nodes, instead of
a binary string. If we take again TSP as an example, solutions may de-
velop by crossover and mutation that are not legal tours, not only with
a binary representation, but also when using integers. These new illegal
individuals need to be repaired or penalized in some way. Another possibil-
ity consists in defining representations and genetic operators in such a way
that only legal solution can be produced. At any rate, the new representa-
tion and operators will bear little resemblance to the classical binary string
based ones. Furthermore, theoretical results obtained for bit strings are not
immediately transferable to other representations. On the other hand, an
abundance of accumulated circumstantial and empirical evidence, tend to
suggest that specially developed genetic representations and operators may
lead to efficient evolutionary solutions to difficult problems.

Ref. [2] contains a discussion of genetic representation issues for combi-
natorial and numerical problems including constrained ones, together with

references to original work.



A completely different representation is suggested by a new way of using
evolutionary algorithms called genetic programming, fully described in ref.
[17]. Genetic programming is a major variation of genetic algorithms in
which the evolving individuals are themselves computer programs instead
of fixed length strings from a rather limited alphabet of symbols. Programs
are represented as trees with ordered branches in which the internal nodes
are functions and the leaves are the so-called terminals of the problem. The
search space in genetic programming is the space of all computer programs
composed of functions and terminals appropriate to the problem domain.

Suitable functions and terminals are determined for the problem at hand
and an initial random population of trees (programs) is constructed. From
there on the population evolves in the usual GA way with fitness being asso-
ciated to the actual execution of the program (individual) and with genetic
operators adapted to the tree representation. The crossover operation starts
by selecting a random crossover point in each parent tree and then exchanges
the sub-trees, giving rise to two offspring trees. Mutation is implemented
by randomly removing a subtree at a selected point and replacing it with a
randomly generated subtree. There are also provisions for preventing trees
from becoming too deep, for simplifying trees and for compressing trees that
perform a useful functions into a single reusable module.

Genetic programming has been shown to be able to automatically breed
programs able to solve, or approximately solve, a variety of relatively simple
problems from many fields [17]. It remains to be seen whether the method-
ology can be extended to automatically evolve problems for more difficult

tasks and for general programming.

5.2 Selection

In section 77 fitness-proportionate selection was introduced. This selection
method is not without problems however. One problem is that, after a
while, since better individuals get more copies in successive generations,
the differences in fitness between individuals become small which renders
selection ineffective. In this case the selection pressure need to be augmented

to allow the better individuals to reproduce more often than they would



under the normal fitness evaluation.

Another problem is the possible existence of a super individual in the
population i.e., an individual with an unusually high fitness. With fitness-
proportionate reproduction this individual will get many copies in successive
generations and rapidly come to dominate the population, thus causing pre-
mature convergence to a possibly local optimum.

It is possible to partially avoid these effects by suitably scaling the eval-
uation function, which amounts to the use of a modified fitness measure.
Several scaling methods have been suggested and are discussed for example
in [1].

Another approach to mitigate the above effects is to use selection meth-
ods that do not allocate trials proportionally to fitness. Two such methods
are ranking selection and tournament selection.

In ranking selection, the individuals in the population are ordered by
fitness and copies assigned in such a way that the best individual receives a
predetermined multiple of the number of copies than the worst one. Rank
selection reduces the dominating effects of super individuals without need
for scaling and, at the same time, it exacerbates the difference between close
fitness values, thus increasing the selection pressure in stagnant populations.
Ranking selection methods have been used with some success, on the other
hand, they ignore the information about relative fitness of different individ-
uals and violate the schema theorem.

In tournament selection a number n of individuals is selected at random
with uniform probability and the best one among them finds its way into the
new population. The winner can also be chosen probabilistically. The pro-
cess is then repeated popsize times. The selection pressure is proportional to
the tournament size n. A widely used value of n is two. Tournament selec-
tion has the advantage that it need not be global so that local tournaments
can be held simultaneously in a spatially organized population (see section
77?).

A quite satisfactory treatment of selection methods together with many

references is to be found in ref. [2].



5.3 Genetic Operators

The one-point crossover and mutation used up to now are the original ver-
sions of the genetic operators. Simple and inspired by biology they have
nevertheless some drawbacks in practice. Consequently, many variants have
been proposed. Let us start with crossover. One natural extension of the
one-point crossover is the multi-point crossover. For instance, in two-points
crossover there are two cut points (marked by the vertical bars) and sub-

strings are swapped between the two points:

001 | 101 | 1010

111 | 001 | 0001

001 | 001 | 1010

111 | 101 | 0001

According to some researchers, multi-point crossover is more apt to com-
bine certain good features present in strings.

Another widely used crossover type is uniform crossover. Given two
parent strings, for each bit in the first offspring a bit in the corresponding
position is copied randomly with some probability from one of the parents.
The second offspring gets the corresponding bit from the remaining parent.
For example, given the two parents above and a probability of 1/2, suppose
that the following series of random choices is made (where 1 stands for the

first parent and 2 for the second):

1221211212

then we would obtain the following offspring:

0111011011

1010010000



Uniform crossover violates the customary form of the schema theorem and
is less likely to preserve good building blocks. However, for some problems,
it has given good results. For a good discussion of crossover-related issues
and further references, see chapter 4 of ref. [2].

Mutation has been less studied than crossover in the GA literature.
Worth of note are adaptive mutation schemes, partly borrowed from evo-
lution strategies, in which either the rate or the form of mutation or both,
vary during a GA run. For instance mutation is sometimes defined in such
a way that the search space is explored uniformly at first and more locally
towards the end, in order to do a kind of local improvement of candidate
solutions. Again, further information on sophisticated mutation techniques

can be found in ref. [2].

5.4 Hybrid Algorithms

Genetic algorithms are a robust, general-purpose search procedure. They
can quickly explore huge search spaces and find those regions that have
above-average fitness. However, when it comes to actually finding global
optima, they sometimes run into difficulties because they lack focus in the
search. This in turn raises the question as to what extent GAs can be com-
petitive for real-world applications when compared to more specialized algo-
rithms and heuristics. The answer may lie in hybrid genetic algorithms. Hy-
brid genetic algorithms work by incorporating a fast and efficient problem-
specific search procedure. They also tend to use encodings and genetic
operators that are tailored to the problem to be solved. By doing so, very
efficient algorithms can be produced, as demonstrated by some recent work
([18],[19]). Hybrid GAs are even less amenable to theoretical analysis than
standard genetic algorithms but they are very interesting in practice and
their use is increasing. A readable description of the motivations behind
hybrid GAs appears in ref. [16].

6 Parallel Evolutionary Algorithms

Parallel computing is becoming an important part of scientific computing in

general since it holds the promise of improving performance by just adding



processors, memory and an interconnection and putting them to work to-
gether on a given problem. By sharing the workload, it is hoped that an
N-processor system will do the job nearly N times faster than a uniproces-
sor system, thereby allowing researchers to treat larger and more interesting
problem instances. In reality, things are not so simple since several over-
head factors contribute to significantly lower the theoretical performance
improvement expectations. In any event, there exist many important prob-
lems that are sufficiently regular in their space and time dimensions to be
suitable for parallel computing. Fortunately, evolutionary algorithms belong
to this class of ‘easy’ parallel problems.

The original formulation of GAs by Holland and others in the seventies
was a sequential one. This approach made it easier to reason about math-
ematical properties of the algorithms and was justified at the time by the
lack of adequate software and hardware. This is no longer the case today
and parallel evolutionary algorithms are becoming more common.

There are two main reasons for parallelizing an evolutionary algorithm:
one is to achieve time savings by distributing the computational effort and
the second is to benefit from a parallel setting from the algorithmic point of
view, in analogy with the natural parallel evolution of spatially distributed
populations.

We will start by describing simple though very useful parallel evolu-
tionary algorithms whereby interesting performance improvements can be
obtained without changing the general sequential evolutionary algorithm
schema. In many real-world problems, the calculation of the individual’s
fitness is by far the most time consuming step of the algorithm. In this
case an obvious approach consists in evaluating each individual fitness si-
multaneously on a different processor. If there are more individuals than
processors, which is often the case, then the individuals to evaluate are di-
vided as evenly as possible among the available processors. It is assumed
that fitness evaluation takes about the same time for any individual. The
other parts of the algorithms are as before and remain centralized. The

following is an informal description of the algorithm:

produce an initial population of individuals



while termination condition not met do
do in parallel
evaluate the fitness of all individuals
end parallel do
select fitter individuals for reproduction
produce new individuals

generate a new population by inserting some new good

individuals and by discarding some old bad individuals
mutate some individuals

end while

Another method consists in running simultaneously and independently
N copies of the algorithm on the N available processors. The best of the mul-
tiple independent runs is then the required result. Since EAs are stochastic,
several runs are in general needed anyway to draw statistically significant
conclusions. The copies must differ in the generation of the initial popula-
tion and possibly in the setting of some parameters such as the crossover and
mutation rate. Each processor computes for a given number of generations.
In practice no communication is needed between processors except when
it is desired to stop the computation when one processor has satisfactorily

solved the problem before the allowed maximum number of generations.

We now turn to more genuinely parallel approaches for evolutionary al-
gorithms. All these find their inspiration in the observation that natural
populations tend to possess a spatial structure. As a result, so-called demes
make their appearance. Demes are semi-independent groups of individuals
or subpopulations having only a loose coupling to other neighbouring demes.
This coupling takes the form of the slow migration or diffusion of some in-
dividuals from one deme to another. A number of models based on spatial
structure have been proposed. The two most important categories are the

1sland and the grid models.



The island model [4,5] features geographically separated subpopulations
of relatively large size. Subpopulations may exchange information by al-
lowing some individuals to migrate from one subpopulation to another with
a given frequency and according to various patterns. The main reason be-
hind this model is to periodically reinject diversity into otherwise converging
subpopulations. When the migration takes place between nearest neighbour
subpopulations the model is called stepping stone. Within each subpop-
ulation a standard sequential evolutionary algorithm is executed between
migration phases. The following is a high-level algorithmic description of
the process:

initialize P subpopulations of size N each
generation number := 1
while termination condition not met do
for each subpopulation do in parallel
evaluate and select individuals by fitness
if generation number mod frequency = O then

send K<N best individuals to

a neighbouring subpopulation

receive K individuals from a

neighbouring population

replace K individuals in

the subpopulation
end if
produce new individuals
mutate individuals
end parallel do

generation number := generation number + 1



end while

Here frequency is the number of generations before an exchange takes
place. Several individual replacement policies have been described in the
literature. One of the most common is for the migrating K individuals to
displace the K worst individuals in the subpopulation. It is to be noted that
the subpopulation size, the frequency of exchange, the number of individuals
to migrate and the migration topology are all new parameters of the algo-
rithm that have to be set in some way. At present there is no rigorous way
for choosing them. However, several empirical investigations have arrived
at rather similar conclusions [4,7].

In the grid or fine-grained model [6] individuals are placed on a large
toroidal two-dimensional grid, one individual per grid location. Fitness eval-
uation is done simultaneoulsy for all individuals and selection, reproduction
and mating take place locally within a small neighborhood. With time,
semi-isolated niches of genetically homogeneous individuals emerge across
the grid as a result of slow individual diffusion. This phenomenon is called
isolation by distance and is due to the fact that the probability of interaction
of two individuals is a fast-decaying function of their distance. The following

is a pseudo-code description of a grid evolutionary algorithm.

for each grid point do in parallel
generate a random individual
end parallel do

while termination condition not met do



for each grid point k£ do in parallel
evaluate individual in k
select a neighbouring individual ¢
produce offspring from k and ¢
assign one of the offspring to k
mutate k£ with probability p,

end parallel do

end while

In the preceding description the neighborhood is generally formed by the
four or eight nearest neighbors of a given grid point. The selection of an
individual in the neighborhood for mating with the central individual can be
done in various ways. Tournament selection is one of the more common and
easier. Likewise, the replacement of the original individual can be done in
several ways. For example, it can be replaced by the best among itself and
the offspring or one of the offspring can replace it at random. The model can
be made more dynamical by adding provisions for longer range individual
movement through random walks, instead of having individuals interacting

exclusively with their nearest neighbours [8].

Though both island and grid models can be implemented on serial ma-
chinery and constitute in this case useful variants of the standard globally
communicating population genetic algorithm, they are ideally suited for par-
allel computers. From an implementation point of view, coarse-grained is-
land models, where the ratio of computation to communication is high, are
more adapted to multiprocessor systems and even for clusters of workstations
[4,5,7]. Grid models are well adapted for massively parallel SIMD (Single In-
struction Multiple Data) machines such as the Connection Machine CM-200
[8], since the necessary local communication operations, though frequent, are
very efficiently implemented in hardware. Further, it should be noted that

hybrid models are also possible. For example, one might consider an island



model in which each island is structured as a grid of individuals interacting

locally.

In general, it has been found that parallel evolutionary algorithms, apart
from being significantly faster, help in relieving the premature convergence
problem and are effective for multimodal optimization [4,5]. This is due
to the larger total populations and to the relative isolation of the spatial
regions where solutions start to co-evolve. Both of these factors help to
preserve diversity while at the same time promoting local search. As in
the sequential case, the effectiveness of the search can be improved at the
expense of generality by permitting hill-climbing, i.e. local improvement
around promising search points [9].

Until now only the space dimension entered into the picture. If we
take time into account as well, then parallel evolutionary algorithms can
be loosely synchronous, synchronous or asynchronous. Island models are in
general loosely synchronous. They use an SPMD (Single Program Multiple
Data) coarse-grain parallelism in which communication phases synchronize
processes. This is not necessary and experiments have been done with asyn-
chronous EAs in which subpopulations exchange individuals only when some
internally measured level of convergence has been attained. This avoids
constraining all coevolving populations to do the swaps at the same time
irrespective of subpopulation evolution. This approach could well be more
effective but requires the handling of a list of exchange requests and needs
a common measure of population diversity. Fine-grained parallel EAs are
fully synchronous when they are implemented on SIMD machines and are

an example of data-parallelism.

Triggered by the recent availability of parallel computers and worksta-
tion clusters, parallel and distributed EAs have been used with success for
some time. They are simple to implement and offer advantages over the
straight sequential algorithm. However, parallelism introduces new degrees
of freedom that have to be dealt with by the implementer, their theoretical
analysis is more difficult and very little is known about their properties.

I conclude this section with a remark concerning the possibility of ob-



taining ‘superlinear speedup’ i.e., getting more than n-fold acceleration with
n processors, when using parallel evolutionary algorithms. Although strictly
speaking superlinear speedup does not arise in deterministic situations, it
becomes possible when an element of chance in choice ordering is present.
For example, this has been shown to be the case in tree and graph searching
problems where, depending on the position of the solution and the way the
search space is subdivided, parallel search may be more than n-fold effec-
tive. The problem lies in determining what are the input distributions that
make the phenomenon possible. Superlinear speedup has been reported in
recent work for parallel evolutionary algorithms and the same effect has been
observed for stochastic algorithms of the Monte Carlo type. Many people,
including the author, have observed that almost always a lower number of
fitness evaluations is needed to reach the same quality of solution in the par-
allel than in the sequential case. This may loosely be attributed to a kind
of cooperative effect in the search that is lost when working with globally

communicating populations.

7 Applications of Evolutionary Algorithms

Literally hundreds of papers have been published in the last few years on EAs
applications that range from industrial optimization and design ([20],[21]),
neural network design ([22]), management and finance ([23]), artificial life
([24]), communication networks ([25]) and many, many others. A complete
bibliography is given in ref.[26]. Clearly, it would be impossible to give
here a faithful account of current applications of EAs. To give the reader a
flavour of this blossoming activity, I will briefly describe two studies: one on
cellular automata, which should appeal to the computational physicist and

the second, to management, more typical of applied GA research.

7.1 Evolving Cellular Automata

Artificial evolutionary processes can be helpful for discovering emergent in-
formation processing capabilities in decentralized, spatially-extended mod-
els. One of the simplest model of this kind is a one-dimensional cellular
automata (CA) [27].



In ref. [28] Crutchfield and coworkers described a simple computational
task for a finite, one-dimensional two-state CA which is to decide whether or
not a given initial CA configuration of zeroes and ones contains more than
half 1s. The task is trivial for systems with a centralized control but it is
difficult for a CA, in which only finite radius information transmission can
take place at any given moment. The seven neighbours cellular automata
rule of Gacs, Kurdymov and Levin rule (GKL) performs this task correctly
for a substantial part of many randomly generated initial configurations.

The authors carried out a set of experiments in which GAs are used to
evolve CA rules for the above described computational task. One-dimensional
CA rules can be easily encoded as binary strings by just successively record-
ing in the string the next states (binary) corresponding to all the neighbor-
hood states combinations in a given rule listed in a fixed order. For example,
the following rule is one of the possible 256 rules with two states and three

neighbours and it is represented by the string (01011010).

111 110 101 100 011 010 001 000
0 1 0 1 1 0 1 0

With seven neighbours and two possible states, one has rules of length
27 = 128 and the number of possible rules is huge: 2!?8. Starting with a
population of random CA rules, the authors have used as a fitness measure
for a rule the number of correct classifications after a given number of CA
steps over 100 initial random configurations chosen with uniform probability.
As usual, the strings (rules) that performed better were selected to survive
and randomly paired to produce new rules by crossover, the offspring being
subject to a small mutation rate.

Computational capabilities and general patterns of rule strategies were
found to automatically emerge from the simulated evolutionary process al-
though in no case the GA-evolved pattern classification strategies were su-
perior to the GKL rule. However, some evolved rules had remarkably good
performance, close to that of the GKL rule which, for a system of this com-
plexity, is a good result. Further findings belonging to the theory of discrete

non-linear dynamical systems are discussed in [28] and related papers.



7.2 Portfolio Selection with Distributed GAs

The central problem in portfolio selection is to find a number of assets and
their weights in such a way that a certain measure of risk is minimized for any
given level of expected return on investment. Classically, risk is measured
as the standard deviation or the variance of the probability distribution
of future returns. In this framework, quadratic programming is used for
solving the portfolio selection problem. More recent approaches are based
on semivariance and downside risk, which roughly means that investors only
perceive risk below the mean of the distribution of returns. For these new
models deterministic algorithms such as quadratic programming are not very
useful. There are tens or even hundreds of assets in a given portfolio and
the risk-return surface is no longer convex, as when variance is used, but
it becomes a very rugged, non-convex, highly multimodal landscape. When
deterministic algorithms for optimization fall short, stochastic and heuristic
methods may become attractive. Genetic algorithms where thus used to
solve the portfolio allocation problem in ref. [29].

Choosing an optimal portfolio can be viewed as a multi-objective op-
timization problem in that an investor wants to minimize risk while max-
imising expected return. As the level of risk increases, the expected re-
turn attached to optimal portfolios draws a convex non-decreasing curve,
which is called efficient frontier, which is the set of Pareto-optimal, i.e. non-
dominated, portfolios. In other words, on the efficient frontier, a larger
expected return corresponds to a greater risk. This can be expressed as a

two-objective optimization problem in the parameters region w:
min{Risk(w)}
w

mvz&X{Return(w)}

subject to

Zwizl

w; >0

These two objectives can be parametrized to yield a parametric objective

rr‘lni,n{)\ Risk(w) — (1 — A) Return(w)},



where parameter A is a trade-off coefficient ranging between 0 and 1. When
A = 0 the investor disregards risk and only seeks to maximize expected
return; when A = 1 the risk alone is minimized, whatever the expected re-
turn. Since there is no general way to tell which particular trade off between
risk and return is to be considered the best, optimizing a portfolio means
finding a whole range of optimal portfolios for all the possible values of the
trade off coefficient; the investors will thus be able to choose the one they
believe appropriate for their requirements. A natural way to achieve that
in an evolutionary setting is to have several distinct populations evolve for
a number of trade-off coefficient values. The greater this number, the finer
the resolution with which the investor will be able to explore the efficient
frontier. Because it is likely that slight variations in the trade-off coefficient
do not significantly worsen a good solution, a natural way to sustain the evo-
lutionary process is to allow migration or cross-breeding between individuals
belonging to populations corresponding to values of the trade-off coefficient
that are close together. This suggests a distributed implementation where
populations are linearly arranged according to their relevant trade-off value.

Distributed GAs of the kind described in section ?? can be used to
speed up the search on a cluster of workstations. The population topology
used was a two-way string of processors in which exchange of individuals
only takes place between nearest neighbours i.e., those with similar trade-off
coeflicients. Very good results have been found in [29] for portfolios with up
to 150 assets. A comparison with a previous sequential solution showed that
the parallel version was not only obviously faster, it also converged on the

average towards better solutions in all cases over many different portfolios.

Evolutionary Computation Resources

There are several ftp and WWW sites worldwide from which useful informa-
tion and public domain code can be obtained. Here we will limit ourselves to
the most important ones: from there it will be easy for the interested person
to follow the links to other relevant sites. The GA site ‘par excellence’ is
The Genetic Algorithms Archive. This can be reached on the web at the
following URL:



http://www.aic.nrl.navy.mil /galist
It can also be accessed by anonymous ftp at the following address:
ftp.aic.nrl.navy.mil in /pub/galist

This well-organized site contains a wealth of information on GA-related ac-
tivities, conferences, courses and workshops, technical reports, source code
and much more. It is possible to suscribe to a low-noise GA list (only
digests are sent about once a week) by sending a message to: GA-list-
request@aic.nrl.navy.mil.

A very complete frequently asked question (FAQ) document can be ob-

tained either from the www site above or by anonymous ftp from:
lumpi.informatik.uni-dortmund.de in /pub/EA /docs/hhgtec-3.1.ps.gz

This FAQ, called The Hitch-Hiker’s Guide to Evolutionary Computation:
A List of Frequentely Asked Questions has been prepared by J. Heitkotter
and is extremely useful. It also contains pointers and advice on techniques

other than GAs, such as evolution strategies and genetic programming.

Guide to the Bibliography

Books

The classical text on Genetic Algorithms is Goldberg’s book [1]. This book
is eminently readable and even a bit verbose at times. It contains very
good chapters on GA theory, the history of evolutionary computing and
the application of evolutionary techniques in the machine learning field, an
AT subject that has not been touched in the present article. On the other
hand, the book is in my opinion too biased towards genetic algorithms to
the detriment of other methods that are only briefly cited and it is a bit
out of date, given the spectacular advances in the field since 1988. I look

forward for a second edition of this excellent text.



Michalewicz’s book [2] is an up-to-date and rather complete treatment
of evolutionary algorithms. It gives clear explanations of the functioning of
genetic algorithms but it also spends a sizeable number of pages on evolu-
tion strategies, new genetic operators and recent variants of EAs. Like Davis
[17], it makes a case for adapting the genetic representation and operators
to the given problem and for hybrid approaches. The chapters on combina-
torial and constrained optimization are especially valuable since the original
sources are scattered in many articles and conference papers. There is also
a chapter on evolutionary machine learning and a good list of references.

Overall, a very good book on the subject.

Handbook of Genetic Algorithms by Davis [17] is an eminently pragmatic
book. The reader is taken by the hand to a whole trip about GAs in less
than 100 pages. This part is very well written and easy to understand. This
chapter is highly advisable to anybody wishing to rapidly grasp the subject
matter. The only drawbacks are the lack of theory and a strong enphasis
on GAs. But, after all, the book ‘is’ about genetic algorithms. The rest
of the book consists in several multiauthor chapters, each one presenting a
real-life application. These chapters are a bit uneven but overall they give
an illuminating view of current industrial applications of GAs.

None of the above books describes parallel EAs in sufficient detail.

For genetic programming, just touched upon here, the standard refer-

ence is Koza’s book [17]. Another useful reference is [30].

Evolution strategies and evolutionary programming are less well repre-
sented, both in the present article for technical reasons, and in the general
literature. Apart from ref. [2], ES are well described in [10].

A recent book by D. Fogel [31] is the only one available on evolutionary
programming, apart from the historical Artificial Intelligence through Simu-
lated Evolution by L.J. Fogel, A.J. Owens and M.J. Walsh, published in 1964.
The book is readable and more biology-oriented than other works. The un-

delying theme is that intelligence in the biological sense is an evolutionary



property and it makes a case for phenotypic adaptation as opposed to the
genotypic evolution typical of the GA.There is a good chapter on theory and

some simple control and game applications are discussed at length.

Conferences and Journals

The most important journal on evolutionary algorithms is FEwvolutionary
Computation, published quarterly by MIT Press. Some related journals are
Adaptive Behaviour and Artificial Life, both published quarterly by MIT
Press and BioSystems, by Elsevier. Many articles on applications are pub-
lished in other journals, Alander’s bibliography [26] being the more complete

source to date.

Many conferences have sections on evolutionary computing. The most

important dedicated conferences are the following;:

o ICGA: International Conference on Genetic Algorithms. It takes place
in the U.S. on odd-numbered years. Proceedings published by Morgan

Kaufmann.

e PPNS: Parallel Problem Solving from Nature. International conference
held in Europe in even-numbered years. Proceedings published by

Springer-Verlag in the Lecture Notes in Computer Science series.

e JCANNGA: International Conference on Artificial Neural Nets and
Genetic Algorithms. Takes place in Europe every two years. Proceed-

ings published by Springer-Verlag.

o Alife: International Conference on Artificial Life. Held in the U.S.
Many articles of interest for artificial evolution. Proceedings by Addison-
Wesley (1987-1992) and MIT Press (1994).
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