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Using ants and other social insects as models, computer scientists have

created software agents that cooperate to solve complex problems, such

as the rerouting of traffic in a busy telecom network

nsects that live in colonies—ants,

bees, wasps, termites—have long

fascinated everyone from naturalists

to artists. Maurice Maeterlinck, the

Belgian poet, once wrote, “What is it that governs here? What is it that

issues orders, foresees the future, elaborates plans and preserves equi-

librium?” These, indeed, are puzzling questions.

Each insect in a colony seems to have its own agenda, and yet the

group as a whole appears to be highly organized. Apparently the seamless

integration of all individual activities does not require any supervision. In

fact, scientists who study the behavior of social insects have found that
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cooperation at the colony level is largely self-organized: in
numerous situations the coordination arises from interac-
tions among individuals. Although these interactions might
be simple (one ant merely following the trail left by another),
together they can solve difficult problems (finding the short-
est route among countless possible paths to a food source).
This collective behavior that emerges from a group of social
insects has been dubbed “swarm intelligence.”

Recently a growing community of researchers has been de-
vising new ways of applying swarm intelligence to diverse
tasks. The foraging of ants has led to a novel method for
rerouting network traffic in busy telecommunications sys-
tems. The cooperative interaction of ants working to trans-
port a large food item may lead to more effective algorithms
for robots. The way in which insects cluster their colony’s
dead and sort their larvae can aid in analyzing banking data.
And the division of labor among honeybees could help
streamline assembly lines in factories.

Virtual Foraging

One of the early studies of swarm intelligence investigated
the foraging behavior of ants. Jean-Louis Deneubourg of

the Free University of Brussels and his colleagues showed that
the ant “highways” often seen in nature (and in people’s
kitchens) result from individual ants exuding pheromone, a
chemical substance, that attracts other ants. Deneubourg, a pi-
oneer in the field, also demonstrated that this process of laying
a trail of pheromone that others can follow was a good strategy
for finding the shortest path between a nest and a food source.

In experiments with the Argentine ant Linepithema humile,
Deneubourg constructed a bridge with two branches, one
twice as long as the other, that separated a nest from a food
source. Within just a few minutes the colony usually selected
the shorter branch. Deneubourg found that the ants lay and
follow trails of pheromone as they forage. The first ants re-
turning to the nest from the food source are those that have
taken the shorter path in both directions, from the nest to the
food and back. Because this route is the first to be doubly
marked with pheromone, nestmates are attracted to it.

If, however, the shorter branch is presented to the colony af-
ter the longer branch, the ants will not take it because the
longer branch has already been marked with pheromone. But
computer scientists can overcome this problem in an artificial
system by introducing pheromone decay: when the chemical
evaporates quickly, longer paths will have trouble maintain-
ing stable pheromone trails. The software ants can then select
a shorter branch even if it is discovered belatedly. This proper-
ty is highly desirable in that it prevents the system from con-
verging on mediocre solutions. (In L. humile, the pheromone
concentrations do decay but at a very slow rate.)

In a computer simulation of pheromone evaporation [see il-
lustration at left], researchers presented identical food sources
to an artificial colony at different distances from the nest. At
first the virtual ants explored their environment randomly.
Then they established trails that connected all of the food
sources to the nest. Next they maintained only the trails of the
sources closest to the nest, leading to the exploitation of those
supplies. With the depletion of that food, the software ants
began to raid the farther sources.

Extending this ant model, Marco Dorigo, a computer scien-
tist at the Free University of Brussells, and his colleagues have
devised a way to solve the famous “traveling salesman prob-
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DIFFERENT FOOD SOURCES are raided
sequentially because of pheromone
evaporation. In this computer simula-
tion,three identical sources of food are
located at unequal distances from a
nest. After foraging randomly (a), the
ants begin to raid the food sources
that are closest (b, c). As those supplies
dwindle, the concentration of phero-
mone along their trails decreases
through evaporation (d). The ants will
then exploit the farther source.

PHEROMONE TRAILS enable
ants to forage efficiently. Two
ants leave the nest at the same
time (top),each taking a differ-
ent path and marking it with
pheromone. The ant that took
the shorter path returns first
(bottom). Because this trail is
now marked with twice as much
pheromone, it will attract oth-
er ants more than the longer
route will.
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NETWORK TRAFFIC can be
rerouted on the fly with soft-
ware agents that mimic ants.
A transmission that needs to
travel from A to B must go
through a number of inter-
mediate nodes.If a portion of
the shortest path (orange)
between the two locations is congested,the system must redirect
the transmission through an alternative (green). Software agents
can perform this rerouting automatically in a manner that is simi-
lar to how ants raid different food sources (illustration above). In
the analogy,a congested path is like a depleted food source.
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In the traveling salesman problem,a
person must find the shortest route by

which to visit a given number of cities,
each exactly once.The classic problem is
devilishly difficult: for just 15 cities [see top
illustration below] there are billions of
route possibilities.

Recently researchers have begun to ex-
periment with antlike agents to derive a
solution.The approach relies on the artifi-
cial ants laying and following the equiva-
lent of pheromone trails [see illustrations
on opposite page].

Envision a colony of such ants,each in-
dependently hopping from city to city, fa-
voring nearby locations but otherwise
traveling randomly.After completing a
tour of all the cities,an ant goes back to
the links it used and deposits pheromone.
The amount of the chemical is inversely
proportional to the overall length of the
tour: the shorter the distance, the more
pheromone each of the links receives.
Thus,after all the ants have completed
their tours and spread their pheromone,
the links that belonged to the highest
number of short tours will be richest with
the chemical.Because the pheromone
evaporates, links in long routes will even-
tually contain significantly less of the sub-
stance than those in short tours will.

The colony of artificial ants is then re-
leased to travel over the cities again,but
this time they are guided by the earlier
pheromone trails (high-concentration
links are favored) as well as by the inter-
city distances (nearby locations have pri-
ority), which the ants can obtain by con-
sulting a table storing those numbers. In
general, the two criteria—pheromone
strength and intercity distance—are
weighted roughly equally.

Marco Dorigo of the Free University of
Brussels and his colleagues have imple-
mented this ant-based system in software.
Of course,the methodology assumes that
the favored links,when taken together,will
lead to an overall short route.Dorigo has
found that after repeating the process
(tour completion followed by pheromone
reinforcement and evaporation) numer-

ous times,the artificial ants are indeed
able to obtain progressively shorter tours,
such as that shown in the bottom illustra-
tion below.

Nevertheless,a difficulty arises when
many routes happen to use a link that,as
it turns out, is not part of a short tour. (In
fact, such a link might belong to many,
many long routes.) Dorigo discovered
that although this popular link might bias
the search for several iterations,a better
connection will eventually replace it.This
optimization is a consequence of the sub-
tle interplay between reinforcement and
evaporation,which ensures that only the
better links survive.Specifically,at some
point an alternative connection that is
part of a short route would be selected by
chance and would become reinforced
more than the popular link,which would
then lose its attractiveness to the artificial

ants as its pheromone evaporated.
Another problem occurs when a short

route contains a very long link that initial-
ly is less likely to be used.But Dorigo has
shown that even though the connection
might be a slow starter,once it has been
selected it will quickly become reinforced
more than other,competing links.

It is important to note that this ant-
based method is effective for finding
short routes but not necessarily the short-
est one.Nevertheless,such near-optimal
solutions are often more than adequate,
particularly because obtaining the best
route can require an unwieldy amount of
computation. In fact,determining the ex-
act solution quickly becomes intractable
as the number of cities increases.

In addition,Dorigo’s system has one ad-
vantage: its inherent flexibility.Because the
artificial ants are continuously exploring
different paths,the pheromone trails pro-
vide backup plans.So,whenever one of the
links breaks down (bad weather between
Houston and Atlanta, for instance),a pool
of alternatives already exists.—E.B. and G.T.
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lem” [see box on preceding page]. The problem calls for find-
ing the shortest route that goes through a given number of
cities exactly once. This test is appealing because it is easy to
formulate and yet extremely difficult to solve. It is “NP-com-
plete”: the solution requires a number of computational steps
that grows faster than the number of cities raised to any finite
power (NP stands for nondeterministic polynomial). For such
problems, people usually try to find an answer that is good
enough but not necessarily the best (that is, a route that is suf-
ficiently short but perhaps not the shortest). Dorigo has shown
that he can obtain near-optimal routes by using artificial ants
that are tweaked so that the concentration of pheromone they
deposit varies with the overall distances they have traveled.

Similar approaches have been successful in a number of
other optimization tasks. For instance, artificial ants provide
the best solution to the classic quadratic assignment problem,
in which the manufacture of a number of goods must be as-
signed to different factories so as to minimize the total dis-
tance over which the items need to be transported between fa-
cilities. In a related application, David Gregg of Unilever in
the U.K. and Vincent Darley of Bios Group in Santa Fe,
N.M., report that they have developed an ant-based method
for decreasing the time it takes to perform a given amount of
work in a large Unilever plant. The system must efficiently
schedule various storage tanks, chemical mixers, packing lines
and other equipment.

In addition to solving optimization problems that are basi-

cally static, or nonvarying, antlike agents can also cope with
glitches and dynamic environments—for example, a factory
where a machine breaks down. By maintaining pheromone
trails and continuously exploring new paths, the ants ser-
endipitously set up a backup plan and thus are prepared to re-
spond to changes in their environment. This property, which
may explain the ecological success of real ants, is crucial for
many applications.

Consider the dynamic unpredictability of a telephone net-
work. A phone call from A to B generally has to go through a
number of intermediate nodes, or switching stations, requir-
ing a mechanism to tell the call where it should hop next to
establish the A-to-B connection. Obviously the algorithm for
this process should avoid congested areas to minimize delays,
and backup routes become especially valuable when condi-
tions change dramatically. Bad weather at an airport or a
phone-in competition on TV will lead to transient local surges
of network traffic, requiring on-the-fly rerouting of calls
through less busy parts of the system.

To handle such conditions, Ruud Schoonderwoerd and
Janet Bruten of Hewlett-Packard’s research laboratories in
Bristol, England, and Owen Holland of the University of the
West of England have invented a routing technique in which
antlike agents deposit bits of information, or “virtual
pheromone,” at the network nodes to reinforce paths through
uncongested areas. Meanwhile an evaporation mechanism
adjusts the node information to disfavor paths that go
through busy areas.

Specifically, each node keeps a routing table that tells phone
calls where to go next depending on their destinations.
Antlike agents continually adjust the table entries, or scores,
to reflect the current network conditions. If an agent experi-

Swarm Smarts

In some ant species,nestmates are recruited to help when a
single ant cannot retrieve a large prey.Then,during an initial

period that can last up to several minutes, the ants change their
positions and alignments around the object until  they are able
to move the prey toward their nest.

Using mechanical robots,C.Ronald Kube and Hong Zhang of
the University of Alberta have reproduced this behavior. The

C o o p e r a t i v e  Tr a n s p o r t  
i n  A n t s  a n d  R o b o t s

ANTS WORK TOGETHER to fold a large leaf (left). Such team-
work has inspired scientists to program robots without the
use of complex software. In an experiment at the University
of Alberta (below), the robots must push an illuminated cir-
cular box toward a light.Even though each robot (right) does
not communicate with the others and acts independently by
following a small set of simple instructions, together the
group is able to accomplish its goal.
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ences a long delay because it went through a highly congested
portion of the network, it will add just a tiny amount of
“pheromone” to the table entries that would send calls to that
overloaded area. In mathematical terms, the scores for the
corresponding nodes would be increased just slightly. On the
other hand, if the agent went quickly from one node to anoth-
er, it would reinforce the use of that path by leaving a lot of
“pheromone”—that is, by increasing the appropriate scores
substantially. The calculations are such that even though a
busy path may by definition have many agents traveling on it,
their cumulative “pheromone” will be less than that of an un-
congested path with fewer agents.

The system removes obsolete solutions by applying a math-
ematical form of evaporation: all of the table entries are de-
creased regularly by a small amount. This process and the
way in which the antlike agents increase the scores are de-
signed to work in tandem so that busy routes experience more
evaporation than reinforcement, whereas uncongested routes
undergo just the opposite.

Any balance between evaporation and reinforcement can
be disrupted easily. When a previously good route becomes
congested, agents that follow it are delayed, and evaporation
overcomes reinforcement. Soon the route is abandoned, and
the agents discover (or rediscover) alternatives and exploit
them. The benefits are twofold: when phone calls are rerouted
through the better parts of a network, the process not only al-
lows the calls to get through expeditiously but also enables
the congested areas to recover from the overload.

Several companies are exploring this approach for handling
the traffic on their networks. France Télécom and British
Telecommunications have taken an early lead in applying ant-
based routing methods to their systems. In the U.S., MCI

Worldcom has been investigating artificial ants not only for
managing the company’s telephone network but also for oth-
er tasks such as customer billing. The ultimate application,
though, may be on the Internet, where traffic is particularly
unpredictable.

To handle the demanding conditions of the Net, Dorigo
and his colleague Gianni Di Caro of the Free University of
Brussells have increased the sophistication of the ant agents by
taking into account several other factors, including the overall
time it takes information to get from its origin to its destina-
tion. (The approach for phone networks considers just the
time it takes to go from one node to another, and the traffic in
the reverse direction is assumed to be the same.) Simulation
results indicate that Dorigo and Di Caro’s system outperforms
all other routing methods in terms of both maximizing
throughput and minimizing delays. In fact, extensive tests sug-
gest that the ant-based method is superior to Open Shortest
Path First, the protocol that the Internet currently uses, in
which nodes must continually inform one another of the sta-
tus of the links to which they are connected.

A Swarm of Applications

Other behaviors of social insects have inspired a variety
of research efforts. Computer scientists are studying in-

sect swarms to devise different techniques for controlling a
group of robots. One application being investigated is coop-
erative transport [see box below]. Using such approaches, en-
gineers could design relatively simple and cheap robots that
would work together to perform increasingly sophisticated
tasks. In another project, a model that was initially intro-
duced to explain how ants cluster their dead and sort their
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task for their robotic army was to push a box
toward a goal, and each individual was pro-
grammed with very simple instructions:find
the box, make contact with it,position yourself
so that the box is between you and the goal,
then push the box toward the goal.

Although the robots were intentionally pro-
grammed very crudely, the similarity between
their behavior and that of a swarm of ants is
striking. (The videotaped experiments can be
viewed at http://www.cs.ualberta.ca/~kube/
on the World Wide Web.) At first, the robots
move randomly, trying to find the box.After lo-
cating it they begin pushing,but if they are un-
successful in moving it they change their posi-

tions and alignments.Even temporary setbacks
are evident,as when the box is moved in a di-
rection away from the goal.The robots make
continual adjustments when they lose contact
with the box, when they block one another or
when the box rotates.Eventually the robots,
despite their limited capabilities,are successful
in delivering the box to the goal.

Obviously, individuals trying to push an ob-
ject can find far more efficient ways to work to-
gether.But because of the extreme simplicity
of this ant-based approach—for one thing, the
robots do not need to communicate with one
another—it is promising for miniaturization
and low-cost applications. —E.B. and G.T.
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In some ant species,such as Messor
sancta, workers pile up their colony’s

dead to clean their nests.The illustration
at the right shows the dynamics of such
cemetery organization. If the corpses are
randomly distributed at the beginning
of the experiment, the workers will form
clusters within a few hours.

Jean-Louis Deneubourg of the Free
University of Brussels and his colleagues
have proposed a simple explanation:
small groups of items grow by attracting
workers to deposit more items,and this
positive feedback leads to the formation
of larger and larger bunches.Scientists,
however,still do not know the exact de-
tails of the individual behavior that im-
plements the feedback mechanism.

Another phenomenon can be ex-
plained in a similar way.The workers of
the ant Leptothorax unifasciatus sort the
colony’s brood systematically.Eggs and
microlarvae are placed at the center of an
area, the largest larvae at the periphery,
and pupae and prepupae in between.
One explanation of this behavior is that
ants pick up and drop items according
to the number of similar surrounding ob-
jects.For example, if an ant finds a large
larva surrounded by eggs, it will most
likely pick up the larval “misfit.”And that
ant will probably deposit its load in a re-
gion containing other large larvae.

By studying such brood sorting,Erik
Lumer of University College London and
Baldo Faieta of Interval Research in Palo
Alto,Calif.,have developed a method for
exploring a large database. Imagine that
a bank wants to determine which of its
customers is most likely to repay a loan.
The problem is that many of the cus-
tomers have never borrowed money
from any financial institution.

But the bank has a large database of
customer profiles with attributes such as
age,gender,marital status, residential
status,banking services used by the cus-
tomer and so on. If the bank had a way
to visualize clusters of people with simi-
lar characteristics, loan officers might be
able to predict more accurately whether

a particular person would repay a loan.
If, for example,a mortgage applicant be-
longed to a group dominated by de-
faulters, that person might not be a
good credit risk.

Because clusters are generally visual-
ized best in two dimensions (higher di-
mensions make the data difficult for hu-
mans to interpret),Lumer and Faieta
represent each customer as a point in a
plane.So each client is like a brood item,
and software ants can move the clients
around,picking them up and depositing
them according to the surrounding
items.The distance between two cus-
tomers indicates how similar they are.
For the single attribute of age, for in-
stance,shorter distances depict smaller
age differences.The artificial ants make
their sorting decisions by considering all
the different customer characteristics si-
multaneously.And depending on the
bank’s objectives, the software could
mathematically weigh some of the at-
tributes more heavily than others.

Through this kind of analysis,one clus-
ter might contain people who are about
20 years old and single,most of them liv-
ing with their parents and whose most
popular banking service is interest
checking.Another grouping may consist
of people who are about 57, female,
married or widowed,and homeowners
with no mortgage.

Of course,banks and insurance com-
panies have already used similar types
of cluster analyses.But the ant-based ap-
proach enables the data to be visualized
easily,and it boasts one intriguing fea-
ture: the number of clusters emerges au-
tomatically from the data, whereas con-
ventional methods usually assume a
predefined number of groups into
which the data are then fit.Thus,antlike
sorting has been effective in discovering
interesting commonalities that might
otherwise have re-
mained hidden.

—E.B. and G.T.

F r o m  C e m e t e r i e s  t o  D a t a b a s e s

WORKER ANTS cluster their dead to clean their nest. At the out-
set of this experiment, 1,500 corpses are located randomly (top).
After 26 hours, the workers have formed three piles (bottom).
This behavior and the way in which ants sort their larvae has led
to a new type of computer program for analyzing banking data.
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larvae has become the basis of a new approach for analyzing
financial data [see box at left]. And research investigating the
flexible way in which honeybees assign tasks could lead to a
more efficient method for scheduling jobs in a factory [see
box at right].

Additional examples abound. Applying knowledge of how
wasps construct their nests, Dan Petrovich of the Air Force In-
stitute of Technology in Dayton, Ohio, has designed a swarm
of tiny mobile satellites that would assemble themselves into a
larger, predefined structure. H. Van Dyke Parunak of the En-
vironmental Research Institute of Michigan in Ann Arbor is
deploying a variety of insectlike software agents to solve man-
ufacturing problems—for example, scheduling a complex net-
work of suppliers to a factory. Paul B. Kantor of Rutgers Uni-
versity has developed a swarm-intelligence approach for find-
ing information over the World Wide Web and in other large
networks. Web surfers looking for interesting sites can, if they
belong to a “colony” of users, access information in the form
of digital pheromones (essentially, ratings) left by fellow mem-
bers in previous searches.

Indeed, the potential of swarm intelligence is enormous. It
offers an alternative way of designing systems that have tra-
ditionally required centralized control and extensive prepro-
gramming. It instead boasts autonomy and self-sufficiency,
relying on direct or indirect interactions among simple indi-
vidual agents. Such operations could lead to systems that can
adapt quickly to rapidly fluctuating conditions.

But the field is in its infancy. Because researchers lack a de-
tailed understanding of the inner workings of insect swarms,
identifying the rules by which individuals in those swarms in-
teract has been a huge challenge, and without such informa-
tion computer scientists have had trouble developing the ap-
propriate software. In addition, although swarm-intelligence
approaches have been effective at performing a number of
optimization and control tasks, the systems developed have
been inherently reactive and lack the necessary overview to
solve problems that require in-depth reasoning techniques.
Furthermore, one criticism of the field is that the use of au-
tonomous insectlike agents will lead to unpredictable behav-
ior in the computers they inhabit. This characteristic may ac-
tually turn out to be a strength, though, in that it could allow
such systems to adapt to solve new, unforeseen problems—a
flexibility that traditional software typically lacks. 

Many futurists predict that chips will soon be embedded
into thousands of mundane objects, from envelopes to trash
cans to heads of lettuce. Enabling all these pieces of silicon to
communicate with one another in a meaningful way will re-
quire novel approaches. As high-technology author Kevin
Kelly puts it, “Dumb parts, properly connected into a swarm,
yield smart results.” The trick, of course, is in the proper con-
nection of all the parts.
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tion, see iridia.ulb.ac.be/dorigo/ACO/ACO.html
on the World Wide Web.
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In a honeybee colony,individuals
specialize in certain tasks,depend-

ing on their age.Older bees,for ex-
ample,tend to be the foragers for
the hive.But the allocation of tasks is
not rigid:when food is scarce,
younger nurse bees will forage,too.

Using such a biological system as
a model,we have worked with
Michael Campos of Northwestern
University to devise a technique for
scheduling paint booths in a truck
factory. In the facility the booths
must paint trucks coming out of an
assembly line,and each booth is
like an artificial bee specializing in
one color.The booths can change
their colors if needed,but doing so
is time-consuming and costly.

Because scientists have yet to
understand exactly how honey-
bees regulate their division of labor,we made the following as-
sumption: an individual performs the tasks for which it is spe-
cialized unless it perceives an important need to perform an-
other function.Thus,a booth with red paint will continue to
handle orders of that color unless an urgent job requires a
white truck and the other booths,particularly those specializ-
ing in white,have much longer queues.

Although this basic rule sounds simplistic, in practice it is very
effective.In fact,a honeybeelike system enables the paint booths
to determine their own schedules with higher efficiency—specif-
ically,fewer color changes—than a centralized computer can
provide. And the method is adept at responding to changes in
consumer demand.If the number of trucks that need to be paint-
ed blue surges unexpectedly,other booths can quickly forgo
their specialty colors to accommodate the unassigned vehicles.
Furthermore,the system copes easily with glitches.When a paint
booth breaks down,other stations compensate swiftly by imme-
diately divvying up the additional load. —E.B. and G.T.

HONEYBEES (top) perform
tasks based on the hive’s
needs. By studying the
way in which these jobs
are assigned, scientists
hope to develop better
ways to program the
equipment in an auto-
mated factory (bottom).
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